1. Herkunft der Daten
Die zugrunde liegenden Daten wurden in einer Online-Umfrage
im November 2021 erhoben. Das Ziel dieser Umfrage ist es, das Ausmaß von
Fahrraddiebstahl in Nordamerika, Europa und dem Vereinigten Königreich
einschätzen zu können.
Die Umfrage umfasst 12 Fragen, welche hier unverändert in der
aufgelistet sind. Bei der Auswahl der Antwort-Möglichkeiten “Other”
beziehungsweise “Others” wird zusätzlich gewünscht, diese Antwort als
Freitext zu spezifizieren. Eine Verifizierung der Eingabe bietet das
Formular nicht. So ist es beispielsweise möglich anzugeben, das Fahrrad
wäre gleichzeitig abgesichert und nicht abgesichert gewesen.
How many times has your bike been stolen since you
started cycling? |
Never 1 2 3 4 5 6 times or
more |
Nein |
Ja |
Where was the last bike stolen from? |
Street Front garden / yard Back garden /
yard Shed Garage Inside home Work or Public Authority
bike parking |
Nein |
Nein |
What was the bike secured with? |
It wasn’t locked Cable lock U-lock / D-lock
Chain lock Folding lock |
Ja |
Nein |
What security rating did the primary lock have? |
Don’t know None Sold Secure Bronze Sold
Secure Silver Sold Secure Gold Sold Secure Diamond
Other |
Nein |
Nein |
How much did you spend on your locks? |
Less than 20 20 - 40 41 - 60 61 - 100
More than 100 |
Nein |
Nein |
What was the approximate value of the bike? |
Less than 100 100 - 400 401 - 700 701 -
1000 Over 1000 |
Nein |
Nein |
Did you have a record of the frame number of the
bike? |
Yes No |
Nein |
Nein |
Did you report the stolen bike to the police? |
Yes No |
Nein |
Nein |
Did you get the stolen bike back? |
Yes No |
Nein |
Nein |
How many times have components (wheels, seats, brakes
etc) been stolen from your bike? |
Never 1 2 3 4 5 6 times or
more
|
Nein |
Ja |
Which components have been stolen? |
Wheels Seats Handlebars Headset
Forks Brakes Gears Lights Others |
Ja |
Nein |
What was the last stolen component attached / secured
with? |
Quick release clamp only Quick release clamp plus
cable Hex bolt or Standard nut only Hex bolt or Standard nut
plus cable Security skewers / nuts (Pinhead, Pitlock, Hexlox
etc) Any other type of secondary bike lock |
Nein |
Nein |
Als Belohnung wurde den ersten 5000 Teilnehmern eine Gewinnchance auf
ein Fahrrad im Wert von bis zu 600 $ in Aussicht gestellt. Eine
Mehrfachteilnahme wird nicht verhindert, weshalb es nahe liegt, dass
einzelne Teilnehmer mehrfach die Umfrage beantworten, um ihre
Gewinnchancen zu steigern.
Neben den Antworten auf die Fragen enthält der Datensatz den Standort
der Teilnehmer. Da diese nicht explizit vom Teilnehmer angegeben wird,
handelt es sich wahrscheinlich um eine grobe Bestimmung anhand der
IP-Adresse statt einer exakten Methode.
2. Einlesen der Daten
Die Daten liegen in einer Excel-Datei vor, welche als Spaltennamen
die jeweiligen Fragen verwendet. Für eine bessere Handhabung werden die
Spaltennamen durch Umbenennen vereinfacht.
library(rmarkdown)
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)
library(readxl)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
data_source <- './Data_With_Geolocations_stud.xlsx'
sheet_name <- 'Geolocation expanded'
data <- read_excel(data_source, sheet = sheet_name) %>%
rename(
bike_stolen_frequency = 'How many times has your bike been stolen since you started cycling?',
place_of_last_bike_theft = 'Where was the last bike stolen from?',
bike_securing_method = 'What was the bike secured with?',
bike_lock_rating = 'What security rating did the primary lock have?',
other_lock_rating = 'Please specify the other security rating...',
bike_lock_cost = 'How much did you spend on your locks?',
bike_cost = 'What was the approximate value of the bike?',
frame_number_record = 'Did you have a record of the frame number of the bike?',
police_report = 'Did you report the stolen bike to the police?',
bike_retrieved = 'Did you get the stolen bike back?',
components_stolen_frequency = 'How many times have components (wheels, seats, brakes etc) been stolen from your bike?',
components_stolen = 'Which components have been stolen?',
other_components_stolen_description = 'Please specify the other components...',
component_securing_method = 'What was the last stolen component attached / secured with?',
location_description = 'Geolocation Details',
location_latitude = 'Latitude',
location_longitude = 'Longitude',
location_country = 'Country',
location_city = 'City'
)
paged_table(data)
3. Aufbereitung
Alle gewählten Antworten bei Fragen mit Mehrfachauswahl befinden sich
in der gleichen Spalte. Um die Qualität der Daten zu verbessern, wird
für jede Option einer Mehrfachauswahl eine weitere Spalte
abgeleitet.
library(stringr)
library(purrr)
check_multi_selection <- function(method, column) {
if_else(
is.na(column),
NA,
if_else(
map_lgl(str_split(column, '\r\n'), ~method %in% .x),
'Yes',
'No'
)
)
}
data <- data %>%
mutate(
bike_not_locked = check_multi_selection('It wasn’t locked', bike_securing_method),
bike_cable_lock = check_multi_selection('Cable lock', bike_securing_method),
bike_u_d_lock = check_multi_selection('U-lock / D-lock', bike_securing_method),
bike_chain_lock = check_multi_selection('Chain lock', bike_securing_method),
bike_folding_lock = check_multi_selection('Folding lock', bike_securing_method),
wheels_stolen = check_multi_selection('Wheels', components_stolen),
seats_stolen = check_multi_selection('Seats', components_stolen),
handlebars_stolen = check_multi_selection('Handlebars', components_stolen),
headset_stolen = check_multi_selection('Headset', components_stolen),
forks_stolen = check_multi_selection('Forks', components_stolen),
brakes_stolen = check_multi_selection('Brakes', components_stolen),
gears_stolen = check_multi_selection('Gears', components_stolen),
lights_stolen = check_multi_selection('Lights', components_stolen),
other_components_stolen = check_multi_selection('Others', components_stolen),
)
paged_table(data)
4. Quantitative Betrachtung der Teilnahmen
Da die Umfragedaten keine Rückschlüsse auf die Teilnehmer zulassen,
lassen sich lediglich die Teilnahmen betrachten. Eine mehrfache
Teilnahme lässt sich nicht eindeutig identifizieren.
Wie viele Antworten auf die Umfrage wurden abgegeben?
library(ggplot2)
donut_diagram <- function(data, values, fill, annotation) {
donut_diameter <- 2.5
ggplot(data, aes(x = donut_diameter, y = values, fill = fill)) +
geom_col() +
geom_text(aes(label = values), position = position_stack(vjust = 0.5), color = 'white') +
coord_polar(theta = "y") +
xlim(c(0.2, donut_diameter + 0.5)) +
theme(
panel.background = element_rect(fill = 'white', color = 'white'),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank()
) +
annotate(
'text',
label = annotation,
fontface = 'bold',
color = 'black',
size = 16,
x = 0.3,
y = 0
)
}
total_count <- nrow(data)
unique_count <- data %>% unique() %>% nrow()
submission_counts <- data.frame(
count = c(unique_count, total_count - unique_count),
group = c("Yes", "No")
)
submission_counts %>%
donut_diagram(values = submission_counts$count, fill = submission_counts$group, annotation = total_count) +
labs(
title = 'Anzahl der Teilnahmen',
fill = 'Einzigartig'
)
Die Doppelnennungen können zufällig entstehen, da ein Teilnehmer die
gleiche Erfahrung gemacht haben kann wie ein anderer. Der Anteil dieser
Antworten liegt bei unter 2 %, weshalb hier keine genauere Betrachtung
benötigt wird und im restlichen Notebook der volle Datensatz verwendet
wird.
5. Geographische Auswertung der Teilnahmen
Aus wie vielen Ländern kommen die Teilnahmen?
country_count <- data %>%
select(location_country) %>%
unique() %>%
filter(!is.na(location_country)) %>%
nrow()
ggplot() +
annotate('text', x = 0, y = 0, size = 16, label = paste('≥', country_count)) +
theme_void()
Das Ergebnis ist als Mindestanzahl zu verstehen, da Teilnahmen nicht
immer einem Land zugeordnet werden können und gegebenenfalls aus
weiteren Ländern getätigt worden sind.
Aus welchen Regionen kommen die Teilnahmen?
library(maps)
world_map <- map_data('world')
ggplot() +
geom_polygon(data = world_map, aes(x = long, y = lat, group = group)) +
theme(
panel.background = element_rect(fill = 'white', color = 'black'),
axis.line = element_line(color = 'black'),
axis.title = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank()
) +
geom_point(
data = data,
aes(x = as.numeric(location_longitude), y = as.numeric(location_latitude)),
color = 'Deep Pink',
fill = 'Pink',
pch = 21,
size = 2,
alpha = I(0.5)
) +
labs(
title = 'Orte der Teilnahmen',
caption = 'Ein Marker entspricht eine Teilnahme.',
)
Welche Regionen sind am meisten vertreten?
library(treemapify)
submissions_per_region <- data %>%
group_by(location_country, location_city) %>%
summarize(region_count = n())
top_countries <- submissions_per_region %>%
filter(!is.na(location_country)) %>%
group_by(location_country) %>%
summarize(country_count = sum(region_count)) %>%
arrange(desc(country_count)) %>%
top_n(5) %>%
select(location_country)
country_city_distrubition <- function(region_counts, country) {
country_regions <- region_counts %>%
filter(location_country == country, !is.na(location_city))
top_region_counts <- country_regions %>%
arrange(desc(region_count)) %>%
top_n(5)
other_region_combined_count <- country_regions %>%
filter(!(location_city %in% top_region_counts$location_city)) %>%
summarize(region_count = sum(region_count), location_city = 'Other')
bind_rows(top_region_counts, other_region_combined_count)
}
top_regions_per_top_country <- bind_rows(
top_countries$location_country %>% map_df(\(x) country_city_distrubition(submissions_per_region, x)),
data %>%
filter(!(location_country %in% top_countries$location_country)) %>%
summarize(region_count = n(), location_city = 'Other', location_country = 'Other')
)
ggplot(
top_regions_per_top_country,
aes(area = region_count, fill = location_country, subgroup = location_country, label = location_city)
) +
geom_treemap() +
geom_treemap_text(colour = 'white', place = 'centre', grow = FALSE) +
labs(
title = 'Regionen mit den meisten Teilnahmen',
caption = 'Die Flächen der Teile entspricht der Anzahl der Teilnahmen.',
fill = 'Land'
)
6. Unstimmigkeiten in den Daten
Da wie genannt das Formular der Umfrage keine hinreichende
Validierung durchführt, treten Widersprüche in den Daten auf. Um
widerspruchslose Aussagen treffen zu können, werden die problematischen
Daten bei der Auswertung ausgeschlossen.
Zu welchem Anteil sind Fahrräder als gestohlen angenommen worden,
ohne gestohlen zu sein?
stolen_never_stolen <- function(data, stated_condition, frequency) {
frequency <- deparse(substitute(frequency))
data %>%
mutate(frequency = map_chr(data[[frequency]], \(x) if_else(x == 'Never', 'No', 'Yes'))) %>%
filter(stated_condition) %>%
group_by(frequency) %>%
summarize(submission_count = n())
}
bike_stolen_never_stolen <- function(data, stated_condition, case) {
data %>%
stolen_never_stolen(
stated_condition = stated_condition,
frequency = bike_stolen_frequency
) %>%
summarize(frequency, submission_count, case = case)
}
bike_theft_counts <- bind_rows(
data %>% bike_stolen_never_stolen(data$bike_retrieved == 'Yes', 'Bike retrieved'),
data %>% bike_stolen_never_stolen(data$bike_retrieved == 'No', 'Bike not retrieved'),
data %>% bike_stolen_never_stolen(data$police_report == 'Yes', 'Bike theft reported to police')
)
total_bike_theft_counts <- bike_theft_counts %>%
group_by(case) %>%
summarize(submission_count = sum(submission_count))
bike_theft_counts %>% ggplot(aes(x = case, y = submission_count, fill = frequency)) +
geom_bar(stat = 'identity') +
geom_text(aes(label = submission_count), position = position_stack(vjust = 0.5), color = 'white') +
geom_text(data = total_bike_theft_counts, aes(label = submission_count, fill = NULL), hjust = -0.5, color = 'black') +
ylim(c(0, 3750)) +
theme(
axis.ticks = element_blank(),
axis.title = element_blank(),
axis.text.x = element_blank(),
panel.background = element_rect(fill = 'white', color = 'white')
) +
coord_flip() +
labs(
title = 'Anzahl der als gestohlen angegebenen Fahrräder je Sachverhalten',
fill = 'Fahrrad gestohlen',
)
In wie vielen Fällen wurden Komponenten als gestohlen angegeben, ohne
gestohlen worden zu sein?
stolen_component_counts <- data %>%
stolen_never_stolen(
stated_condition = !is.na(data$components_stolen),
frequency = components_stolen_frequency
)
stolen_component_counts %>%
donut_diagram(
values = stolen_component_counts$submission_count,
fill = stolen_component_counts$frequency,
annotation = stolen_component_counts %>% summarize(submission_count = sum(submission_count))
) +
labs(
title = 'Anzahl der Teilnahmen mit als geklaut angegebene Komponenten',
fill = 'Komponente gestohlen',
caption = 'Anzahl der Teilnahmen welche als mindestens eine Komponente als gestohlen angeben.'
)
7. Ausmaß der Diebstähle
Wie häufig treten Diebstähle auf?
heat_map_design <- function(plot) {
plot +
geom_tile(color = 'white', lwd = 1.5, linetype = 1) +
coord_fixed() +
scale_fill_gradient(low = "grey", high = "Deep Pink") +
theme(
plot.title = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0.5),
panel.background = element_rect(fill = 'white', color = 'white'),
axis.line = element_line(color = 'white'),
axis.ticks = element_blank(),
axis.title.y = element_text(margin = margin(r = 10)),
axis.title.x = element_text(margin = margin(t = 10)),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1),
legend.position = 'none'
)
}
data %>%
group_by(bike_stolen_frequency, components_stolen_frequency) %>%
summarize(
submission_count = n(),
bike_frequency_order = if_else(bike_stolen_frequency == 'Never', '0', bike_stolen_frequency),
components_frequency_order = if_else(
components_stolen_frequency == 'Never',
'0',
components_stolen_frequency
)
) %>%
ggplot(aes(x = bike_frequency_order, y = components_frequency_order, fill = submission_count)) %>%
heat_map_design() +
geom_text(aes(label = submission_count), color = 'white', size = 4) +
labs(
title = 'Anzahl der Teilnahmen pro Anzahl der erlebte Diebstähle',
y = 'Anzahl der erlebten Komponentendiebstähle',
x = 'Anzahl der erlebten Fahrraddiebstähle'
)
Da gerade weniger als ein Fünftel der Teilnahmen keine Diebstähle
angeben, lässt sich darüber hinaus ein Selection-Bias vermuten. Bei
einer öffentlichen Onlineumfrage handelt es sich nicht immer um eine
randomisierte Stichprobe. Es ist denkbar, dass Teilnehmer, die Diebstahl
erlebt haben, ein größeres Interesse aufweisen und dadurch
überproportional vertreten sind.
In welchen Ländern wird am wahrscheinlichsten mindestens ein Fahrrad
gestohlen?
Die Frage wird mittels der bedingten Diebstahlwahrscheinlichkeit
beantwortet. Da häufig Länder zu wenige Teilnahmen haben, um eine
treffende Aussage machen zu können, sind diese unter “Other”
zusammengefasst.
theft_per_country <- data %>%
filter(!is.na(location_country)) %>%
mutate(
bike_stolen = if_else(bike_stolen_frequency == 'Never', 'No', 'Yes'),
location_country = if_else(location_country %in% top_countries$location_country, location_country, 'Other')
) %>%
group_by(location_country, bike_stolen) %>%
summarize(submission_count = n())
theft_totals_per_country <- theft_per_country %>%
group_by(location_country) %>%
summarize(total_submission_per_country = sum(submission_count))
merge(theft_per_country, theft_totals_per_country) %>%
filter(bike_stolen == "Yes") %>%
mutate(theft_likelihood = submission_count / total_submission_per_country) %>%
arrange(desc(theft_likelihood)) %>%
ggplot(aes(x = location_country, y = theft_likelihood, fill = location_country)) +
coord_cartesian(ylim = c(0.65, 0.85)) +
geom_bar(stat = 'identity') +
geom_text(aes(label = scales::percent(theft_likelihood)), vjust = -1, color = 'black') +
theme(
legend.position = 'none',
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.title.y = element_text(margin(r = 20))
) +
labs(
title = 'Fahrraddiebstahlswahrscheinlichkeit für die Länder mit den meisten Teilnahmen',
y = 'Diebstahlwahrscheinlichkeit',
caption = 'Wahrscheinlichkeiten, dass mindestens ein Fahrrad gestohlen wird.'
)
Auch hier lässt sich wie oben erklärt ein Selection-Bias vermuten. Es
fällt jedoch auf, dass die Diebstahlwahrscheinlichkeit in Kanada und den
Vereinigten Staaten mit über 80 % am höchsten liegt. Eine mögliche
Begründung könnte die hohe Abhängigkeit vom Auto in den Ländern sein.
Ein Fahrrad ist für die Mehrheit der Bevölkerung in den Ländern ein
Sportgerät, nicht ein alltägliches Transportmittel. Dies könnte zu einem
Diebstahl durch wertvollere Fahrräder attraktiver machen und zum anderen
soziale Hemmungen reduzieren, da ein Diebstahl nicht einen
Mobilitätsverlust verursacht.
Welche Komponenten werden am meisten gestohlen?
stolen_components <- data %>%
filter(components_stolen_frequency != 'Never')
count_stolen <- function(data, name, column) {
column <- deparse(substitute(column))
data %>%
filter(data[[column]] == "Yes") %>%
summarize(submission_count = n(), component = name) %>%
summarize(component, theft_frequency = submission_count / nrow(data))
}
bind_rows(
stolen_components %>% count_stolen('Wheels', wheels_stolen),
stolen_components %>% count_stolen('Seats', seats_stolen),
stolen_components %>% count_stolen('Handlebars', handlebars_stolen),
stolen_components %>% count_stolen('Headsets', headset_stolen),
stolen_components %>% count_stolen('Forks', forks_stolen),
stolen_components %>% count_stolen('Brakes', brakes_stolen),
stolen_components %>% count_stolen('Gears', gears_stolen),
stolen_components %>% count_stolen('Lights', lights_stolen),
stolen_components %>% count_stolen('Other', other_components_stolen),
) %>%
ggplot(aes(x = component, y = theft_frequency, fill = '')) +
geom_bar(stat = 'identity') +
geom_text(aes(label = scales::percent(theft_frequency)), vjust = -1, color = 'black') +
theme(
legend.position = 'none',
axis.ticks = element_blank(),
axis.title.y = element_blank(),
axis.title.x = element_blank(),
) +
ylim(c(0, 0.5)) +
labs(
title = 'Häufigkeit der Diebstähle je Komponente unter den Komponentendiebstählen',
)
Es fällt auf, das Komponenten, die ohne Werkzeuge entfernt werden
können, auch deutlich häufiger gestohlen werden als die, die Werkzeug
benötigen.
8. Effektivität der Maßnahmen zur Fahrraddiebstahlaufklärung
Eine Aussage zur Effektivität einer Maßnahme lässt sich durch das
Vergleichen der bedingten Wahrscheinlichkeit treffen.
Werden Fälle mit bekannter Rahmennummer öfters Äufgeklärt?
library(kableExtra)
library(knitr)
library(tibble)
library(tidyr)
stolen_bikes <- data %>%
filter(bike_stolen_frequency != 'Never')
two_conditions <- function(data, condition_x, condition_y) {
condition_x <- deparse(substitute(condition_x))
condition_y <- deparse(substitute(condition_y))
data %>%
filter(!is.na(data[condition_x]), !is.na(data[[condition_y]])) %>%
group_by(.data[[condition_x]], .data[[condition_y]]) %>%
summarize(submission_count = n())
}
yes_no_label <- function(value, yes, no) {
case_when(
value == "Yes" ~ yes,
value == "No" ~ no,
.default = value
)
}
contingency_table <- function(data, condition_x, condition_y, x_lables, y_lables) {
condition_x <- deparse(substitute(condition_x))
condition_y <- deparse(substitute(condition_y))
sum_label <- 'Summe'
sum_color <- '#f3f3f3'
frame <- data %>%
mutate(
'{condition_x}' := x_lables(.data[[condition_x]]),
'{condition_y}' := y_lables(.data[[condition_y]]),
) %>%
pivot_wider(names_from = condition_x, values_from = submission_count) %>%
column_to_rownames(var = condition_y) %>%
as.matrix() %>%
addmargins() %>%
as.data.frame()
colnames(frame)[3] <- sum_label
row.names(frame)[3] <- sum_label
frame %>%
kable(format = 'html') %>%
kable_styling() %>%
row_spec(0, extra_css = 'border-bottom: 1px solid;') %>%
row_spec(2, extra_css = 'border-bottom: 1px solid;') %>%
column_spec(1, bold = TRUE, border_right = TRUE, include_thead = TRUE) %>%
column_spec(4, background = sum_color, include_thead = TRUE, border_left = TRUE) %>%
row_spec(3, background = sum_color) %>%
print()
data
}
two_conditions_plot <- function(data, condition_x, condition_y) {
condition_x <- deparse(substitute(condition_x))
condition_y <- deparse(substitute(condition_y))
data %>%
mutate(likelihood = submission_count / nrow(data)) %>%
ggplot(aes(x = .data[[condition_x]], y = .data[[condition_y]], fill = likelihood)) %>%
heat_map_design() +
geom_text(aes(label = scales::percent(likelihood)), color = 'white', size = 4)
}
retrieve_to_frame_number <- stolen_bikes %>% two_conditions(bike_retrieved, frame_number_record)
retrieve_to_frame_number %>%
contingency_table(
bike_retrieved,
frame_number_record,
\(x) yes_no_label(x, "Fahrrad zurückerhalten", "Fahrrad nicht zurückerhalten"),
\(y) yes_no_label(y, "Rahmennummer bekannt", "Rahmennummer nicht bekannt")
) %>%
two_conditions_plot(bike_retrieved, frame_number_record) +
labs(
title = 'Aufklärungsquotenverteilung der Fahrraddiebstähle in Abhängikeit zur Rahmennummer',
x = 'Fahrrad zurückerhalten',
y = 'Rahmennummer bekannt',
caption = 'Die Randhäufigkeiten entsprechen der Summe einer einzeler Zeile beziehungsweiße Spalte.'
)
|
Fahrrad nicht zurückerhalten
|
Fahrrad zurückerhalten
|
Summe
|
Rahmennummer nicht bekannt
|
2393
|
357
|
2750
|
Rahmennummer bekannt
|
719
|
356
|
1075
|
Summe
|
3112
|
713
|
3825
|
improvement_plot <- function(data, fixed_condition, changing_condition) {
fixed_condition <- deparse(substitute(fixed_condition))
changing_condition <- deparse(substitute(changing_condition))
totals <- data %>%
group_by(.data[[changing_condition]]) %>%
summarize(total = sum(submission_count))
likelihoods <- merge(data, totals, by = changing_condition) %>%
filter(.data[[fixed_condition]] == "Yes") %>%
mutate(likelihood = submission_count / total)
likelihood <- function(data, condition) {
(data %>% filter(.data[[changing_condition]] == condition))$likelihood[[1]]
}
improvement <- ((likelihoods %>% likelihood("Yes")) / (likelihoods %>% likelihood("No"))) - 1
ggplot() +
annotate('text', x = 0, y = 0, size = 14, label = paste(scales::percent(improvement), 'more likely')) +
theme_void()
}
retrieve_to_frame_number %>%
improvement_plot(bike_retrieved, frame_number_record)
Werden Fälle mit polizeilicher Meldung öfters Äufgeklärt?
retrieve_to_report <- stolen_bikes %>%
two_conditions(bike_retrieved, police_report)
retrieve_to_report %>%
contingency_table(
bike_retrieved,
police_report,
\(x) yes_no_label(x, "Fahrrad zurückerhalten", "Fahrrad nicht zurückerhalten"),
\(x) yes_no_label(x, "Polizeilich gemeldet", "Polizeilich nicht gemeldet")
) %>%
two_conditions_plot(bike_retrieved, police_report) +
labs(
title = 'Aufklärungsquotenverteilung der Fahrraddiebstähle in Abhängikeit zur polizeilicher Behörde',
x = 'Fahrrad zurückerhalten',
y = 'Polizeilich gemeldet',
caption = 'Die Randhäufigkeiten entsprechen der Summe einer einzeler Zeile beziehungsweiße Spalte.'
)
|
Fahrrad nicht zurückerhalten
|
Fahrrad zurückerhalten
|
Summe
|
Polizeilich nicht gemeldet
|
1675
|
362
|
2037
|
Polizeilich gemeldet
|
1435
|
348
|
1783
|
Summe
|
3110
|
710
|
3820
|
retrieve_to_report %>% improvement_plot(bike_retrieved, police_report)
Werden Fälle mit Rahmennummer öfters polizeilich gemeldet?
report_to_frame_number <- stolen_bikes %>%
two_conditions(police_report, frame_number_record)
report_to_frame_number %>%
contingency_table(
police_report,
frame_number_record,
\(x) yes_no_label(x, "Polizeilich gemeldet", "Polizeilich nicht gemeldet"),
\(y) yes_no_label(y, "Rahmennummer bekannt", "Rahmennummer nicht bekannt")
) %>%
two_conditions_plot(police_report, frame_number_record) +
labs(
title = 'Polizeiliche Fahrraddiebstahlmeldequotenverteilung in Abhängikeit zur Rahmennummer',
x = 'Polizeilich gemeldet',
y = 'Rahmennummer bekannt',
caption = 'Die Randhäufigkeiten entsprechen der Summe einer einzeler Zeile beziehungsweiße Spalte.'
)
|
Polizeilich nicht gemeldet
|
Polizeilich gemeldet
|
Summe
|
Rahmennummer nicht bekannt
|
1717
|
1036
|
2753
|
Rahmennummer bekannt
|
324
|
749
|
1073
|
Summe
|
2041
|
1785
|
3826
|
report_to_frame_number %>% improvement_plot(police_report, frame_number_record)
LS0tCnRpdGxlOiAiRXhwbG9yYXRpdmUgRGF0ZW5hbmFseXNlIHZvbiBGYWhycmFkZGllYnN0w6RobGUiCi0tLQoKCiMgMS4gSGVya3VuZnQgZGVyIERhdGVuCgpEaWUgenVncnVuZGUgbGllZ2VuZGVuIERhdGVuIHd1cmRlbiBpbiBlaW5lciBbT25saW5lLVVtZnJhZ2VdKGh0dHBzOi8vdGhlYmVzdGJpa2Vsb2NrLmNvbS93aW4tZnJlZS1iaWtlLWNvbXBldGl0aW9uLykKaW0gTm92ZW1iZXIgMjAyMSBlcmhvYmVuLgpEYXMgWmllbCBkaWVzZXIgVW1mcmFnZSBpc3QgZXMsIGRhcyBBdXNtYcOfIHZvbiBGYWhycmFkZGllYnN0YWhsIGluIE5vcmRhbWVyaWthLCBFdXJvcGEgdW5kIGRlbSBWZXJlaW5pZ3RlbiBLw7ZuaWdyZWljaAplaW5zY2jDpHR6ZW4genUga8O2bm5lbi4KCkRpZSBVbWZyYWdlIHVtZmFzc3QgMTIgRnJhZ2VuLCB3ZWxjaGUgaGllciB1bnZlcsOkbmRlcnQgaW4gZGVyIGF1ZmdlbGlzdGV0IHNpbmQuCkJlaSBkZXIgQXVzd2FobCBkZXIgQW50d29ydC1Nw7ZnbGljaGtlaXRlbiAiT3RoZXIiIGJlemllaHVuZ3N3ZWlzZSAiT3RoZXJzIiB3aXJkIHp1c8OkdHpsaWNoIGdld8O8bnNjaHQsIGRpZXNlIEFudHdvcnQgYWxzCkZyZWl0ZXh0IHp1IHNwZXppZml6aWVyZW4uCkVpbmUgVmVyaWZpemllcnVuZyBkZXIgRWluZ2FiZSBiaWV0ZXQgZGFzIEZvcm11bGFyIG5pY2h0LgpTbyBpc3QgZXMgYmVpc3BpZWxzd2Vpc2UgbcO2Z2xpY2ggYW56dWdlYmVuLCBkYXMgRmFocnJhZCB3w6RyZSBnbGVpY2h6ZWl0aWcgYWJnZXNpY2hlcnQgdW5kIG5pY2h0IGFiZ2VzaWNoZXJ0IGdld2VzZW4uCgo8IS0tIEBmb3JtYXR0ZXI6b2ZmIC0tPgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tCkZyYWdlICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBBbnR3b3J0LU3DtmdsaWNoa2VpdGVuICAgICAgICAgICAgICAgICAgTWVocmZhY2hhdXN3YWhsIFZlcnBmbGljaHRlbmQKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tIC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tIC0tLS0tLS0tLS0tLS0tLSAtLS0tLS0tLS0tLS0tCkhvdyBtYW55IHRpbWVzIGhhcyB5b3VyIGJpa2UgYmVlbiBzdG9sZW4gc2luY2UgeW91ICBOZXZlcjxicj4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICBOZWluICAgICAgICAgICAgSmEKc3RhcnRlZCBjeWNsaW5nPyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDE8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAyPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMzxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDQ8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA1PGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgNiB0aW1lcyBvciBtb3JlCgpXaGVyZSB3YXMgdGhlIGxhc3QgYmlrZSBzdG9sZW4gZnJvbT8gICAgICAgICAgICAgICAgU3RyZWV0PGJyPiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTmVpbiAgICAgICAgICAgIE5laW4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEZyb250IGdhcmRlbiAvIHlhcmQ8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCYWNrIGdhcmRlbiAvIHlhcmQ8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTaGVkPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgR2FyYWdlPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSW5zaWRlIGhvbWU8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXb3JrIG9yIFB1YmxpYyBBdXRob3JpdHkKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJpa2U8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwYXJraW5nCgpXaGF0IHdhcyB0aGUgYmlrZSBzZWN1cmVkIHdpdGg/ICAgICAgICAgICAgICAgICAgICAgSXQgd2FzbuKAmXQgbG9ja2VkPGJyPiAgICAgICAgICAgICAgICAgICBKYSAgICAgICAgICAgICAgTmVpbgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FibGUgbG9jazxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFUtbG9jayAvIEQtbG9jazxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENoYWluIGxvY2s8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBGb2xkaW5nIGxvY2sKCldoYXQgc2VjdXJpdHkgcmF0aW5nIGRpZCB0aGUgcHJpbWFyeSBsb2NrIGhhdmU/ICAgICBEb24ndCBrbm93PGJyPiAgICAgICAgICAgICAgICAgICAgICAgICBOZWluICAgICAgICAgICAgTmVpbgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTm9uZTxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNvbGQgU2VjdXJlIEJyb256ZTxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNvbGQgU2VjdXJlIFNpbHZlcjxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNvbGQgU2VjdXJlIEdvbGQ8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBTb2xkIFNlY3VyZSBEaWFtb25kPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgT3RoZXIKCkhvdyBtdWNoIGRpZCB5b3Ugc3BlbmQgb24geW91ciBsb2Nrcz8gICAgICAgICAgICAgICBMZXNzIHRoYW4gMjA8YnI+ICAgICAgICAgICAgICAgICAgICAgICBOZWluICAgICAgICAgICAgTmVpbgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMjAgLSA0MDxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDQxIC0gNjA8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA2MSAtIDEwMDxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1vcmUgdGhhbiAxMDAKCldoYXQgd2FzIHRoZSBhcHByb3hpbWF0ZSB2YWx1ZSBvZiB0aGUgYmlrZT8gICAgICAgICBMZXNzIHRoYW4gMTAwPGJyPiAgICAgICAgICAgICAgICAgICAgICBOZWluICAgICAgICAgICAgTmVpbgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMTAwIC0gNDAwPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgNDAxIC0gNzAwPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgNzAxIC0gMTAwMDxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE92ZXIgMTAwMAoKRGlkIHlvdSBoYXZlIGEgcmVjb3JkIG9mIHRoZSBmcmFtZSBudW1iZXIgb2YgdGhlICAgIFllczxicj4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE5laW4gICAgICAgICAgICBOZWluCmJpa2U/ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBObwoKRGlkIHlvdSByZXBvcnQgdGhlIHN0b2xlbiBiaWtlIHRvIHRoZSBwb2xpY2U/ICAgICAgIFllczxicj4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE5laW4gICAgICAgICAgICBOZWluCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBObwoKRGlkIHlvdSBnZXQgdGhlIHN0b2xlbiBiaWtlIGJhY2s/ICAgICAgICAgICAgICAgICAgIFllczxicj4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE5laW4gICAgICAgICAgICBOZWluCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBObwoKSG93IG1hbnkgdGltZXMgaGF2ZSBjb21wb25lbnRzICh3aGVlbHMsIHNlYXRzLCAgICAgIE5ldmVyPGJyPiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE5laW4gICAgICAgICAgICBKYQpicmFrZXMgZXRjKSBiZWVuIHN0b2xlbiBmcm9tIHlvdXIgYmlrZT8gICAgICAgICAgICAgMTxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDI8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAzPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgNDxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIDU8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA2IHRpbWVzIG9yIG1vcmU8YnI+CgpXaGljaCBjb21wb25lbnRzIGhhdmUgYmVlbiBzdG9sZW4/ICAgICAgICAgICAgICAgICAgV2hlZWxzPGJyPiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSmEgICAgICAgICAgICAgIE5laW4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNlYXRzPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSGFuZGxlYmFyczxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEhlYWRzZXQ8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBGb3Jrczxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEJyYWtlczxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEdlYXJzPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTGlnaHRzPGJyPgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgT3RoZXJzCgpXaGF0IHdhcyB0aGUgbGFzdCBzdG9sZW4gY29tcG9uZW50IGF0dGFjaGVkIC8gICAgICAgUXVpY2sgcmVsZWFzZSBjbGFtcCBvbmx5PGJyPiAgICAgICAgICAgTmVpbiAgICAgICAgICAgIE5laW4Kc2VjdXJlZCB3aXRoPyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFF1aWNrIHJlbGVhc2UgY2xhbXAgcGx1cwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY2FibGU8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBIZXggYm9sdCBvciBTdGFuZGFyZCBudXQgb25seTxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEhleCBib2x0IG9yIFN0YW5kYXJkIG51dCBwbHVzCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjYWJsZTxicj4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFNlY3VyaXR5IHNrZXdlcnMgLyBudXRzIChQaW5oZWFkLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgUGl0bG9jaywgSGV4bG94IGV0Yyk8YnI+CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBBbnkgb3RoZXIgdHlwZSBvZiBzZWNvbmRhcnkgYmlrZQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jawotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCjwhLS0gQGZvcm1hdHRlcjpvbiAtLT4KCkFscyBCZWxvaG51bmcgd3VyZGUgZGVuIGVyc3RlbiA1MDAwIFRlaWxuZWhtZXJuIGVpbmUgR2V3aW5uY2hhbmNlIGF1ZiBlaW4gRmFocnJhZCBpbSBXZXJ0IHZvbiBiaXMgenUgNjAwwqAkIGluCkF1c3NpY2h0IGdlc3RlbGx0LgpFaW5lIE1laHJmYWNodGVpbG5haG1lIHdpcmQgbmljaHQgdmVyaGluZGVydCwgd2VzaGFsYiBlcyBuYWhlIGxpZWd0LCBkYXNzIGVpbnplbG5lIFRlaWxuZWhtZXIgbWVocmZhY2ggZGllIFVtZnJhZ2UKYmVhbnR3b3J0ZW4sIHVtIGlocmUgR2V3aW5uY2hhbmNlbiB6dSBzdGVpZ2Vybi4KCk5lYmVuIGRlbiBBbnR3b3J0ZW4gYXVmIGRpZSBGcmFnZW4gZW50aMOkbHQgZGVyIERhdGVuc2F0eiBkZW4gU3RhbmRvcnQgZGVyIFRlaWxuZWhtZXIuCkRhIGRpZXNlIG5pY2h0IGV4cGxpeml0IHZvbSBUZWlsbmVobWVyIGFuZ2VnZWJlbiB3aXJkLCBoYW5kZWx0IGVzIHNpY2ggd2FocnNjaGVpbmxpY2ggdW0gZWluZSBncm9iZSBCZXN0aW1tdW5nIGFuaGFuZApkZXIgSVAtQWRyZXNzZSBzdGF0dCBlaW5lciBleGFrdGVuIE1ldGhvZGUuCgojIDIuIEVpbmxlc2VuIGRlciBEYXRlbgoKRGllIERhdGVuIGxpZWdlbiBpbiBlaW5lciBFeGNlbC1EYXRlaSB2b3IsIHdlbGNoZSBhbHMgU3BhbHRlbm5hbWVuIGRpZSBqZXdlaWxpZ2VuIEZyYWdlbiB2ZXJ3ZW5kZXQuCkbDvHIgZWluZSBiZXNzZXJlIEhhbmRoYWJ1bmcgd2VyZGVuIGRpZSBTcGFsdGVubmFtZW4gZHVyY2ggVW1iZW5lbm5lbiB2ZXJlaW5mYWNodC4KCmBgYHtyfQpsaWJyYXJ5KHJtYXJrZG93bikKCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0UpCgpsaWJyYXJ5KHJlYWR4bCkKbGlicmFyeShkcGx5cikKCmRhdGFfc291cmNlIDwtICcuL0RhdGFfV2l0aF9HZW9sb2NhdGlvbnNfc3R1ZC54bHN4JwpzaGVldF9uYW1lIDwtICdHZW9sb2NhdGlvbiBleHBhbmRlZCcKCmRhdGEgPC0gcmVhZF9leGNlbChkYXRhX3NvdXJjZSwgc2hlZXQgPSBzaGVldF9uYW1lKSAlPiUKICByZW5hbWUoCiAgICBiaWtlX3N0b2xlbl9mcmVxdWVuY3kgPSAnSG93IG1hbnkgdGltZXMgaGFzIHlvdXIgYmlrZSBiZWVuIHN0b2xlbiBzaW5jZSB5b3Ugc3RhcnRlZCBjeWNsaW5nPycsCiAgICBwbGFjZV9vZl9sYXN0X2Jpa2VfdGhlZnQgPSAnV2hlcmUgd2FzIHRoZSBsYXN0IGJpa2Ugc3RvbGVuIGZyb20/JywKICAgIGJpa2Vfc2VjdXJpbmdfbWV0aG9kID0gJ1doYXQgd2FzIHRoZSBiaWtlIHNlY3VyZWQgd2l0aD8nLAogICAgYmlrZV9sb2NrX3JhdGluZyA9ICdXaGF0IHNlY3VyaXR5IHJhdGluZyBkaWQgdGhlIHByaW1hcnkgbG9jayBoYXZlPycsCiAgICBvdGhlcl9sb2NrX3JhdGluZyA9ICdQbGVhc2Ugc3BlY2lmeSB0aGUgb3RoZXIgc2VjdXJpdHkgcmF0aW5nLi4uJywKICAgIGJpa2VfbG9ja19jb3N0ID0gJ0hvdyBtdWNoIGRpZCB5b3Ugc3BlbmQgb24geW91ciBsb2Nrcz8nLAogICAgYmlrZV9jb3N0ID0gJ1doYXQgd2FzIHRoZSBhcHByb3hpbWF0ZSB2YWx1ZSBvZiB0aGUgYmlrZT8nLAogICAgZnJhbWVfbnVtYmVyX3JlY29yZCA9ICdEaWQgeW91IGhhdmUgYSByZWNvcmQgb2YgdGhlIGZyYW1lIG51bWJlciBvZiB0aGUgYmlrZT8nLAogICAgcG9saWNlX3JlcG9ydCA9ICdEaWQgeW91IHJlcG9ydCB0aGUgc3RvbGVuIGJpa2UgdG8gdGhlIHBvbGljZT8nLAogICAgYmlrZV9yZXRyaWV2ZWQgPSAnRGlkIHlvdSBnZXQgdGhlIHN0b2xlbiBiaWtlIGJhY2s/JywKICAgIGNvbXBvbmVudHNfc3RvbGVuX2ZyZXF1ZW5jeSA9ICdIb3cgbWFueSB0aW1lcyBoYXZlIGNvbXBvbmVudHMgKHdoZWVscywgc2VhdHMsIGJyYWtlcyBldGMpIGJlZW4gc3RvbGVuIGZyb20geW91ciBiaWtlPycsCiAgICBjb21wb25lbnRzX3N0b2xlbiA9ICdXaGljaCBjb21wb25lbnRzIGhhdmUgYmVlbiBzdG9sZW4/JywKICAgIG90aGVyX2NvbXBvbmVudHNfc3RvbGVuX2Rlc2NyaXB0aW9uID0gJ1BsZWFzZSBzcGVjaWZ5IHRoZSBvdGhlciBjb21wb25lbnRzLi4uJywKICAgIGNvbXBvbmVudF9zZWN1cmluZ19tZXRob2QgPSAnV2hhdCB3YXMgdGhlIGxhc3Qgc3RvbGVuIGNvbXBvbmVudCBhdHRhY2hlZCAvIHNlY3VyZWQgd2l0aD8nLAogICAgbG9jYXRpb25fZGVzY3JpcHRpb24gPSAnR2VvbG9jYXRpb24gRGV0YWlscycsCiAgICBsb2NhdGlvbl9sYXRpdHVkZSA9ICdMYXRpdHVkZScsCiAgICBsb2NhdGlvbl9sb25naXR1ZGUgPSAnTG9uZ2l0dWRlJywKICAgIGxvY2F0aW9uX2NvdW50cnkgPSAnQ291bnRyeScsCiAgICBsb2NhdGlvbl9jaXR5ID0gJ0NpdHknCiAgKQoKcGFnZWRfdGFibGUoZGF0YSkKYGBgCgojIDMuIEF1ZmJlcmVpdHVuZwoKQWxsZSBnZXfDpGhsdGVuIEFudHdvcnRlbiBiZWkgRnJhZ2VuIG1pdCBNZWhyZmFjaGF1c3dhaGwgYmVmaW5kZW4gc2ljaCBpbiBkZXIgZ2xlaWNoZW4gU3BhbHRlLgpVbSBkaWUgUXVhbGl0w6R0IGRlciBEYXRlbiB6dSB2ZXJiZXNzZXJuLCB3aXJkIGbDvHIgamVkZSBPcHRpb24gZWluZXIgTWVocmZhY2hhdXN3YWhsIGVpbmUgd2VpdGVyZSBTcGFsdGUgYWJnZWxlaXRldC4KCmBgYHtyfQpsaWJyYXJ5KHN0cmluZ3IpCmxpYnJhcnkocHVycnIpCgpjaGVja19tdWx0aV9zZWxlY3Rpb24gPC0gZnVuY3Rpb24obWV0aG9kLCBjb2x1bW4pIHsKICBpZl9lbHNlKAogICAgaXMubmEoY29sdW1uKSwKICAgIE5BLAogICAgaWZfZWxzZSgKICAgICAgbWFwX2xnbChzdHJfc3BsaXQoY29sdW1uLCAnXHJcbicpLCB+bWV0aG9kICVpbiUgLngpLAogICAgICAnWWVzJywKICAgICAgJ05vJwogICAgKQogICkKfQoKZGF0YSA8LSBkYXRhICU+JQogIG11dGF0ZSgKICAgIGJpa2Vfbm90X2xvY2tlZCA9IGNoZWNrX211bHRpX3NlbGVjdGlvbignSXQgd2FzbuKAmXQgbG9ja2VkJywgYmlrZV9zZWN1cmluZ19tZXRob2QpLAogICAgYmlrZV9jYWJsZV9sb2NrID0gY2hlY2tfbXVsdGlfc2VsZWN0aW9uKCdDYWJsZSBsb2NrJywgYmlrZV9zZWN1cmluZ19tZXRob2QpLAogICAgYmlrZV91X2RfbG9jayA9IGNoZWNrX211bHRpX3NlbGVjdGlvbignVS1sb2NrIC8gRC1sb2NrJywgYmlrZV9zZWN1cmluZ19tZXRob2QpLAogICAgYmlrZV9jaGFpbl9sb2NrID0gY2hlY2tfbXVsdGlfc2VsZWN0aW9uKCdDaGFpbiBsb2NrJywgYmlrZV9zZWN1cmluZ19tZXRob2QpLAogICAgYmlrZV9mb2xkaW5nX2xvY2sgPSBjaGVja19tdWx0aV9zZWxlY3Rpb24oJ0ZvbGRpbmcgbG9jaycsIGJpa2Vfc2VjdXJpbmdfbWV0aG9kKSwKICAgIHdoZWVsc19zdG9sZW4gPSBjaGVja19tdWx0aV9zZWxlY3Rpb24oJ1doZWVscycsIGNvbXBvbmVudHNfc3RvbGVuKSwKICAgIHNlYXRzX3N0b2xlbiA9IGNoZWNrX211bHRpX3NlbGVjdGlvbignU2VhdHMnLCBjb21wb25lbnRzX3N0b2xlbiksCiAgICBoYW5kbGViYXJzX3N0b2xlbiA9IGNoZWNrX211bHRpX3NlbGVjdGlvbignSGFuZGxlYmFycycsIGNvbXBvbmVudHNfc3RvbGVuKSwKICAgIGhlYWRzZXRfc3RvbGVuID0gY2hlY2tfbXVsdGlfc2VsZWN0aW9uKCdIZWFkc2V0JywgY29tcG9uZW50c19zdG9sZW4pLAogICAgZm9ya3Nfc3RvbGVuID0gY2hlY2tfbXVsdGlfc2VsZWN0aW9uKCdGb3JrcycsIGNvbXBvbmVudHNfc3RvbGVuKSwKICAgIGJyYWtlc19zdG9sZW4gPSBjaGVja19tdWx0aV9zZWxlY3Rpb24oJ0JyYWtlcycsIGNvbXBvbmVudHNfc3RvbGVuKSwKICAgIGdlYXJzX3N0b2xlbiA9IGNoZWNrX211bHRpX3NlbGVjdGlvbignR2VhcnMnLCBjb21wb25lbnRzX3N0b2xlbiksCiAgICBsaWdodHNfc3RvbGVuID0gY2hlY2tfbXVsdGlfc2VsZWN0aW9uKCdMaWdodHMnLCBjb21wb25lbnRzX3N0b2xlbiksCiAgICBvdGhlcl9jb21wb25lbnRzX3N0b2xlbiA9IGNoZWNrX211bHRpX3NlbGVjdGlvbignT3RoZXJzJywgY29tcG9uZW50c19zdG9sZW4pLAogICkKCnBhZ2VkX3RhYmxlKGRhdGEpCmBgYAoKIyA0LiBRdWFudGl0YXRpdmUgQmV0cmFjaHR1bmcgZGVyIFRlaWxuYWhtZW4KCkRhIGRpZSBVbWZyYWdlZGF0ZW4ga2VpbmUgUsO8Y2tzY2hsw7xzc2UgYXVmIGRpZSBUZWlsbmVobWVyIHp1bGFzc2VuLCBsYXNzZW4gc2ljaCBsZWRpZ2xpY2ggZGllIFRlaWxuYWhtZW4gYmV0cmFjaHRlbi4KRWluZSBtZWhyZmFjaGUgVGVpbG5haG1lIGzDpHNzdCBzaWNoIG5pY2h0IGVpbmRldXRpZyBpZGVudGlmaXppZXJlbi4KCj4gV2llIHZpZWxlIEFudHdvcnRlbiBhdWYgZGllIFVtZnJhZ2Ugd3VyZGVuIGFiZ2VnZWJlbj8KCmBgYHtyLCBmaWcud2lkdGg9MTB9CmxpYnJhcnkoZ2dwbG90MikKCmRvbnV0X2RpYWdyYW0gPC0gZnVuY3Rpb24oZGF0YSwgdmFsdWVzLCBmaWxsLCBhbm5vdGF0aW9uKSB7CiAgZG9udXRfZGlhbWV0ZXIgPC0gMi41CgogIGdncGxvdChkYXRhLCBhZXMoeCA9IGRvbnV0X2RpYW1ldGVyLCB5ID0gdmFsdWVzLCBmaWxsID0gZmlsbCkpICsKICAgIGdlb21fY29sKCkgKwogICAgZ2VvbV90ZXh0KGFlcyhsYWJlbCA9IHZhbHVlcyksIHBvc2l0aW9uID0gcG9zaXRpb25fc3RhY2sodmp1c3QgPSAwLjUpLCBjb2xvciA9ICd3aGl0ZScpICsKICAgIGNvb3JkX3BvbGFyKHRoZXRhID0gInkiKSArCiAgICB4bGltKGMoMC4yLCBkb251dF9kaWFtZXRlciArIDAuNSkpICsKICAgIHRoZW1lKAogICAgICBwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAnd2hpdGUnLCBjb2xvciA9ICd3aGl0ZScpLAogICAgICBheGlzLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgICBheGlzLnRleHQgPSBlbGVtZW50X2JsYW5rKCksCiAgICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2JsYW5rKCkKICAgICkgKwogICAgYW5ub3RhdGUoCiAgICAgICd0ZXh0JywKICAgICAgbGFiZWwgPSBhbm5vdGF0aW9uLAogICAgICBmb250ZmFjZSA9ICdib2xkJywKICAgICAgY29sb3IgPSAnYmxhY2snLAogICAgICBzaXplID0gMTYsCiAgICAgIHggPSAwLjMsCiAgICAgIHkgPSAwCiAgICApCn0KCnRvdGFsX2NvdW50IDwtIG5yb3coZGF0YSkKdW5pcXVlX2NvdW50IDwtIGRhdGEgJT4lIHVuaXF1ZSgpICU+JSBucm93KCkKCnN1Ym1pc3Npb25fY291bnRzIDwtIGRhdGEuZnJhbWUoCiAgY291bnQgPSBjKHVuaXF1ZV9jb3VudCwgdG90YWxfY291bnQgLSB1bmlxdWVfY291bnQpLAogIGdyb3VwID0gYygiWWVzIiwgIk5vIikKKQoKc3VibWlzc2lvbl9jb3VudHMgJT4lCiAgZG9udXRfZGlhZ3JhbSh2YWx1ZXMgPSBzdWJtaXNzaW9uX2NvdW50cyRjb3VudCwgZmlsbCA9IHN1Ym1pc3Npb25fY291bnRzJGdyb3VwLCBhbm5vdGF0aW9uID0gdG90YWxfY291bnQpICsKICBsYWJzKAogICAgdGl0bGUgPSAnQW56YWhsIGRlciBUZWlsbmFobWVuJywKICAgIGZpbGwgPSAnRWluemlnYXJ0aWcnCiAgKQpgYGAKCkRpZSBEb3BwZWxuZW5udW5nZW4ga8O2bm5lbiB6dWbDpGxsaWcgZW50c3RlaGVuLCBkYSBlaW4gVGVpbG5laG1lciBkaWUgZ2xlaWNoZSBFcmZhaHJ1bmcgZ2VtYWNodCBoYWJlbiBrYW5uIHdpZSBlaW4KYW5kZXJlci4KRGVyIEFudGVpbCBkaWVzZXIgQW50d29ydGVuIGxpZWd0IGJlaSB1bnRlciAywqAlLCB3ZXNoYWxiIGhpZXIga2VpbmUgZ2VuYXVlcmUgQmV0cmFjaHR1bmcgYmVuw7Z0aWd0IHdpcmQgdW5kIGltCnJlc3RsaWNoZW4gTm90ZWJvb2sgZGVyIHZvbGxlIERhdGVuc2F0eiB2ZXJ3ZW5kZXQgd2lyZC4KCiMgNS4gR2VvZ3JhcGhpc2NoZSBBdXN3ZXJ0dW5nIGRlciBUZWlsbmFobWVuCgo+IEF1cyB3aWUgdmllbGVuIEzDpG5kZXJuIGtvbW1lbiBkaWUgVGVpbG5haG1lbj8KCmBgYHtyLCBmaWcud2lkdGggPSAxMCwgZmlnLmhlaWdodCA9IDJ9CmNvdW50cnlfY291bnQgPC0gZGF0YSAlPiUKICBzZWxlY3QobG9jYXRpb25fY291bnRyeSkgJT4lCiAgdW5pcXVlKCkgJT4lCiAgZmlsdGVyKCFpcy5uYShsb2NhdGlvbl9jb3VudHJ5KSkgJT4lCiAgbnJvdygpCgpnZ3Bsb3QoKSArCiAgYW5ub3RhdGUoJ3RleHQnLCB4ID0gMCwgeSA9IDAsIHNpemUgPSAxNiwgbGFiZWwgPSBwYXN0ZSgn4omlJywgY291bnRyeV9jb3VudCkpICsKICB0aGVtZV92b2lkKCkKYGBgCgpEYXMgRXJnZWJuaXMgaXN0IGFscyBNaW5kZXN0YW56YWhsIHp1IHZlcnN0ZWhlbiwgZGEgVGVpbG5haG1lbiBuaWNodCBpbW1lciBlaW5lbSBMYW5kIHp1Z2VvcmRuZXQgd2VyZGVuIGvDtm5uZW4gdW5kCmdlZ2ViZW5lbmZhbGxzIGF1cyB3ZWl0ZXJlbiBMw6RuZGVybiBnZXTDpHRpZ3Qgd29yZGVuIHNpbmQuCgo+IEF1cyB3ZWxjaGVuIFJlZ2lvbmVuIGtvbW1lbiBkaWUgVGVpbG5haG1lbj8KCmBgYHtyLCBmaWcud2lkdGg9MTAsZmlnLmhlaWdodD02LjI1fQpsaWJyYXJ5KG1hcHMpCgp3b3JsZF9tYXAgPC0gbWFwX2RhdGEoJ3dvcmxkJykKCmdncGxvdCgpICsKICBnZW9tX3BvbHlnb24oZGF0YSA9IHdvcmxkX21hcCwgYWVzKHggPSBsb25nLCB5ID0gbGF0LCBncm91cCA9IGdyb3VwKSkgKwogIHRoZW1lKAogICAgcGFuZWwuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gJ3doaXRlJywgY29sb3IgPSAnYmxhY2snKSwKICAgIGF4aXMubGluZSA9IGVsZW1lbnRfbGluZShjb2xvciA9ICdibGFjaycpLAogICAgYXhpcy50aXRsZSA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGV4dCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2JsYW5rKCkKICApICsKICBnZW9tX3BvaW50KAogICAgZGF0YSA9IGRhdGEsCiAgICBhZXMoeCA9IGFzLm51bWVyaWMobG9jYXRpb25fbG9uZ2l0dWRlKSwgeSA9IGFzLm51bWVyaWMobG9jYXRpb25fbGF0aXR1ZGUpKSwKICAgIGNvbG9yID0gJ0RlZXAgUGluaycsCiAgICBmaWxsID0gJ1BpbmsnLAogICAgcGNoID0gMjEsCiAgICBzaXplID0gMiwKICAgIGFscGhhID0gSSgwLjUpCiAgKSArCiAgbGFicygKICAgIHRpdGxlID0gJ09ydGUgZGVyIFRlaWxuYWhtZW4nLAogICAgY2FwdGlvbiA9ICdFaW4gTWFya2VyIGVudHNwcmljaHQgZWluZSBUZWlsbmFobWUuJywKICApCmBgYAoKPiBXZWxjaGUgUmVnaW9uZW4gc2luZCBhbSBtZWlzdGVuIHZlcnRyZXRlbj8KCmBgYHtyLCBmaWcud2lkdGg9MTAsZmlnLmhlaWdodD01fQpsaWJyYXJ5KHRyZWVtYXBpZnkpCgpzdWJtaXNzaW9uc19wZXJfcmVnaW9uIDwtIGRhdGEgJT4lCiAgZ3JvdXBfYnkobG9jYXRpb25fY291bnRyeSwgbG9jYXRpb25fY2l0eSkgJT4lCiAgc3VtbWFyaXplKHJlZ2lvbl9jb3VudCA9IG4oKSkKCnRvcF9jb3VudHJpZXMgPC0gc3VibWlzc2lvbnNfcGVyX3JlZ2lvbiAlPiUKICBmaWx0ZXIoIWlzLm5hKGxvY2F0aW9uX2NvdW50cnkpKSAlPiUKICBncm91cF9ieShsb2NhdGlvbl9jb3VudHJ5KSAlPiUKICBzdW1tYXJpemUoY291bnRyeV9jb3VudCA9IHN1bShyZWdpb25fY291bnQpKSAlPiUKICBhcnJhbmdlKGRlc2MoY291bnRyeV9jb3VudCkpICU+JQogIHRvcF9uKDUpICU+JQogIHNlbGVjdChsb2NhdGlvbl9jb3VudHJ5KQoKY291bnRyeV9jaXR5X2Rpc3RydWJpdGlvbiA8LSBmdW5jdGlvbihyZWdpb25fY291bnRzLCBjb3VudHJ5KSB7CiAgY291bnRyeV9yZWdpb25zIDwtIHJlZ2lvbl9jb3VudHMgJT4lCiAgICBmaWx0ZXIobG9jYXRpb25fY291bnRyeSA9PSBjb3VudHJ5LCAhaXMubmEobG9jYXRpb25fY2l0eSkpCgogIHRvcF9yZWdpb25fY291bnRzIDwtIGNvdW50cnlfcmVnaW9ucyAlPiUKICAgIGFycmFuZ2UoZGVzYyhyZWdpb25fY291bnQpKSAlPiUKICAgIHRvcF9uKDUpCgogIG90aGVyX3JlZ2lvbl9jb21iaW5lZF9jb3VudCA8LSBjb3VudHJ5X3JlZ2lvbnMgJT4lCiAgICBmaWx0ZXIoIShsb2NhdGlvbl9jaXR5ICVpbiUgdG9wX3JlZ2lvbl9jb3VudHMkbG9jYXRpb25fY2l0eSkpICU+JQogICAgc3VtbWFyaXplKHJlZ2lvbl9jb3VudCA9IHN1bShyZWdpb25fY291bnQpLCBsb2NhdGlvbl9jaXR5ID0gJ090aGVyJykKCiAgYmluZF9yb3dzKHRvcF9yZWdpb25fY291bnRzLCBvdGhlcl9yZWdpb25fY29tYmluZWRfY291bnQpCn0KCnRvcF9yZWdpb25zX3Blcl90b3BfY291bnRyeSA8LSBiaW5kX3Jvd3MoCiAgdG9wX2NvdW50cmllcyRsb2NhdGlvbl9jb3VudHJ5ICU+JSBtYXBfZGYoXCh4KSBjb3VudHJ5X2NpdHlfZGlzdHJ1Yml0aW9uKHN1Ym1pc3Npb25zX3Blcl9yZWdpb24sIHgpKSwKICBkYXRhICU+JQogICAgZmlsdGVyKCEobG9jYXRpb25fY291bnRyeSAlaW4lIHRvcF9jb3VudHJpZXMkbG9jYXRpb25fY291bnRyeSkpICU+JQogICAgc3VtbWFyaXplKHJlZ2lvbl9jb3VudCA9IG4oKSwgbG9jYXRpb25fY2l0eSA9ICdPdGhlcicsIGxvY2F0aW9uX2NvdW50cnkgPSAnT3RoZXInKQopCgpnZ3Bsb3QoCiAgdG9wX3JlZ2lvbnNfcGVyX3RvcF9jb3VudHJ5LAogIGFlcyhhcmVhID0gcmVnaW9uX2NvdW50LCBmaWxsID0gbG9jYXRpb25fY291bnRyeSwgc3ViZ3JvdXAgPSBsb2NhdGlvbl9jb3VudHJ5LCBsYWJlbCA9IGxvY2F0aW9uX2NpdHkpCikgKwogIGdlb21fdHJlZW1hcCgpICsKICBnZW9tX3RyZWVtYXBfdGV4dChjb2xvdXIgPSAnd2hpdGUnLCBwbGFjZSA9ICdjZW50cmUnLCBncm93ID0gRkFMU0UpICsKICBsYWJzKAogICAgdGl0bGUgPSAnUmVnaW9uZW4gbWl0IGRlbiBtZWlzdGVuIFRlaWxuYWhtZW4nLAogICAgY2FwdGlvbiA9ICdEaWUgRmzDpGNoZW4gZGVyIFRlaWxlIGVudHNwcmljaHQgZGVyIEFuemFobCBkZXIgVGVpbG5haG1lbi4nLAogICAgZmlsbCA9ICdMYW5kJwogICkKYGBgCgoKIyA2LiBVbnN0aW1taWdrZWl0ZW4gaW4gZGVuIERhdGVuCgpEYSB3aWUgZ2VuYW5udCBkYXMgRm9ybXVsYXIgZGVyIFVtZnJhZ2Uga2VpbmUgaGlucmVpY2hlbmRlIFZhbGlkaWVydW5nIGR1cmNoZsO8aHJ0LCB0cmV0ZW4gV2lkZXJzcHLDvGNoZSBpbiBkZW4gRGF0ZW4KYXVmLgpVbSB3aWRlcnNwcnVjaHNsb3NlIEF1c3NhZ2VuIHRyZWZmZW4genUga8O2bm5lbiwgd2VyZGVuIGRpZSBwcm9ibGVtYXRpc2NoZW4gRGF0ZW4gYmVpIGRlciBBdXN3ZXJ0dW5nIGF1c2dlc2NobG9zc2VuLgoKPiBadSB3ZWxjaGVtIEFudGVpbCBzaW5kIEZhaHJyw6RkZXIgYWxzIGdlc3RvaGxlbiBhbmdlbm9tbWVuIHdvcmRlbiwgb2huZSBnZXN0b2hsZW4genUgc2Vpbj8KCmBgYHtyLCBmaWcud2lkdGg9MTAsIGZpZy5oZWlnaHQgPSAzfQpzdG9sZW5fbmV2ZXJfc3RvbGVuIDwtIGZ1bmN0aW9uKGRhdGEsIHN0YXRlZF9jb25kaXRpb24sIGZyZXF1ZW5jeSkgewogIGZyZXF1ZW5jeSA8LSBkZXBhcnNlKHN1YnN0aXR1dGUoZnJlcXVlbmN5KSkKCiAgZGF0YSAlPiUKICAgIG11dGF0ZShmcmVxdWVuY3kgPSBtYXBfY2hyKGRhdGFbW2ZyZXF1ZW5jeV1dLCBcKHgpIGlmX2Vsc2UoeCA9PSAnTmV2ZXInLCAnTm8nLCAnWWVzJykpKSAlPiUKICAgIGZpbHRlcihzdGF0ZWRfY29uZGl0aW9uKSAlPiUKICAgIGdyb3VwX2J5KGZyZXF1ZW5jeSkgJT4lCiAgICBzdW1tYXJpemUoc3VibWlzc2lvbl9jb3VudCA9IG4oKSkKfQoKYmlrZV9zdG9sZW5fbmV2ZXJfc3RvbGVuIDwtIGZ1bmN0aW9uKGRhdGEsIHN0YXRlZF9jb25kaXRpb24sIGNhc2UpIHsKICBkYXRhICU+JQogICAgc3RvbGVuX25ldmVyX3N0b2xlbigKICAgICAgc3RhdGVkX2NvbmRpdGlvbiA9IHN0YXRlZF9jb25kaXRpb24sCiAgICAgIGZyZXF1ZW5jeSA9IGJpa2Vfc3RvbGVuX2ZyZXF1ZW5jeQogICAgKSAlPiUKICAgIHN1bW1hcml6ZShmcmVxdWVuY3ksIHN1Ym1pc3Npb25fY291bnQsIGNhc2UgPSBjYXNlKQp9CgpiaWtlX3RoZWZ0X2NvdW50cyA8LSBiaW5kX3Jvd3MoCiAgZGF0YSAlPiUgYmlrZV9zdG9sZW5fbmV2ZXJfc3RvbGVuKGRhdGEkYmlrZV9yZXRyaWV2ZWQgPT0gJ1llcycsICdCaWtlIHJldHJpZXZlZCcpLAogIGRhdGEgJT4lIGJpa2Vfc3RvbGVuX25ldmVyX3N0b2xlbihkYXRhJGJpa2VfcmV0cmlldmVkID09ICdObycsICdCaWtlIG5vdCByZXRyaWV2ZWQnKSwKICBkYXRhICU+JSBiaWtlX3N0b2xlbl9uZXZlcl9zdG9sZW4oZGF0YSRwb2xpY2VfcmVwb3J0ID09ICdZZXMnLCAnQmlrZSB0aGVmdCByZXBvcnRlZCB0byBwb2xpY2UnKQopCgp0b3RhbF9iaWtlX3RoZWZ0X2NvdW50cyA8LSBiaWtlX3RoZWZ0X2NvdW50cyAlPiUKICBncm91cF9ieShjYXNlKSAlPiUKICBzdW1tYXJpemUoc3VibWlzc2lvbl9jb3VudCA9IHN1bShzdWJtaXNzaW9uX2NvdW50KSkKCmJpa2VfdGhlZnRfY291bnRzICU+JSBnZ3Bsb3QoYWVzKHggPSBjYXNlLCB5ID0gc3VibWlzc2lvbl9jb3VudCwgZmlsbCA9IGZyZXF1ZW5jeSkpICsKICBnZW9tX2JhcihzdGF0ID0gJ2lkZW50aXR5JykgKwogIGdlb21fdGV4dChhZXMobGFiZWwgPSBzdWJtaXNzaW9uX2NvdW50KSwgcG9zaXRpb24gPSBwb3NpdGlvbl9zdGFjayh2anVzdCA9IDAuNSksIGNvbG9yID0gJ3doaXRlJykgKwogIGdlb21fdGV4dChkYXRhID0gdG90YWxfYmlrZV90aGVmdF9jb3VudHMsIGFlcyhsYWJlbCA9IHN1Ym1pc3Npb25fY291bnQsIGZpbGwgPSBOVUxMKSwgaGp1c3QgPSAtMC41LCBjb2xvciA9ICdibGFjaycpICsKICB5bGltKGMoMCwgMzc1MCkpICsKICB0aGVtZSgKICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlID0gZWxlbWVudF9ibGFuaygpLAogICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X2JsYW5rKCksCiAgICBwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAnd2hpdGUnLCBjb2xvciA9ICd3aGl0ZScpCiAgKSArCiAgY29vcmRfZmxpcCgpICsKICBsYWJzKAogICAgdGl0bGUgPSAnQW56YWhsIGRlciBhbHMgZ2VzdG9obGVuIGFuZ2VnZWJlbmVuIEZhaHJyw6RkZXIgamUgU2FjaHZlcmhhbHRlbicsCiAgICBmaWxsID0gJ0ZhaHJyYWQgZ2VzdG9obGVuJywKICApCgpgYGAKCgo+IEluIHdpZSB2aWVsZW4gRsOkbGxlbiB3dXJkZW4gS29tcG9uZW50ZW4gYWxzIGdlc3RvaGxlbiBhbmdlZ2ViZW4sIG9obmUgZ2VzdG9obGVuIHdvcmRlbiB6dSBzZWluPwoKYGBge3IsIGZpZy53aWR0aCA9IDEwfQpzdG9sZW5fY29tcG9uZW50X2NvdW50cyA8LSBkYXRhICU+JQogIHN0b2xlbl9uZXZlcl9zdG9sZW4oCiAgICBzdGF0ZWRfY29uZGl0aW9uID0gIWlzLm5hKGRhdGEkY29tcG9uZW50c19zdG9sZW4pLAogICAgZnJlcXVlbmN5ID0gY29tcG9uZW50c19zdG9sZW5fZnJlcXVlbmN5CiAgKQoKc3RvbGVuX2NvbXBvbmVudF9jb3VudHMgJT4lCiAgZG9udXRfZGlhZ3JhbSgKICAgIHZhbHVlcyA9IHN0b2xlbl9jb21wb25lbnRfY291bnRzJHN1Ym1pc3Npb25fY291bnQsCiAgICBmaWxsID0gc3RvbGVuX2NvbXBvbmVudF9jb3VudHMkZnJlcXVlbmN5LAogICAgYW5ub3RhdGlvbiA9IHN0b2xlbl9jb21wb25lbnRfY291bnRzICU+JSBzdW1tYXJpemUoc3VibWlzc2lvbl9jb3VudCA9IHN1bShzdWJtaXNzaW9uX2NvdW50KSkKICApICsKICBsYWJzKAogICAgdGl0bGUgPSAnQW56YWhsIGRlciBUZWlsbmFobWVuIG1pdCBhbHMgZ2VrbGF1dCBhbmdlZ2ViZW5lIEtvbXBvbmVudGVuJywKICAgIGZpbGwgPSAnS29tcG9uZW50ZSBnZXN0b2hsZW4nLAogICAgY2FwdGlvbiA9ICdBbnphaGwgZGVyIFRlaWxuYWhtZW4gd2VsY2hlIGFscyBtaW5kZXN0ZW5zIGVpbmUgS29tcG9uZW50ZSBhbHMgZ2VzdG9obGVuIGFuZ2ViZW4uJwogICkKYGBgCgojIDcuIEF1c21hw58gZGVyIERpZWJzdMOkaGxlCgo+IFdpZSBow6R1ZmlnIHRyZXRlbiBEaWVic3TDpGhsZSBhdWY/CgpgYGB7ciwgZmlnLndpZHRoID0gMTAsIGZpZy5oZWlnaHQgPSA4fQpoZWF0X21hcF9kZXNpZ24gPC0gZnVuY3Rpb24ocGxvdCkgewogIHBsb3QgKwogICAgZ2VvbV90aWxlKGNvbG9yID0gJ3doaXRlJywgbHdkID0gMS41LCBsaW5ldHlwZSA9IDEpICsKICAgIGNvb3JkX2ZpeGVkKCkgKwogICAgc2NhbGVfZmlsbF9ncmFkaWVudChsb3cgPSAiZ3JleSIsIGhpZ2ggPSAiRGVlcCBQaW5rIikgKwogICAgdGhlbWUoCiAgICAgIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpLAogICAgICBwbG90LmNhcHRpb24gPSBlbGVtZW50X3RleHQoaGp1c3QgPSAwLjUpLAogICAgICBwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9yZWN0KGZpbGwgPSAnd2hpdGUnLCBjb2xvciA9ICd3aGl0ZScpLAogICAgICBheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoY29sb3IgPSAnd2hpdGUnKSwKICAgICAgYXhpcy50aWNrcyA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgYXhpcy50aXRsZS55ID0gZWxlbWVudF90ZXh0KG1hcmdpbiA9IG1hcmdpbihyID0gMTApKSwKICAgICAgYXhpcy50aXRsZS54ID0gZWxlbWVudF90ZXh0KG1hcmdpbiA9IG1hcmdpbih0ID0gMTApKSwKICAgICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoYW5nbGUgPSA5MCwgdmp1c3QgPSAwLjUsIGhqdXN0ID0gMSksCiAgICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICdub25lJwogICAgKQp9CgpkYXRhICU+JQogIGdyb3VwX2J5KGJpa2Vfc3RvbGVuX2ZyZXF1ZW5jeSwgY29tcG9uZW50c19zdG9sZW5fZnJlcXVlbmN5KSAlPiUKICBzdW1tYXJpemUoCiAgICBzdWJtaXNzaW9uX2NvdW50ID0gbigpLAogICAgYmlrZV9mcmVxdWVuY3lfb3JkZXIgPSBpZl9lbHNlKGJpa2Vfc3RvbGVuX2ZyZXF1ZW5jeSA9PSAnTmV2ZXInLCAnMCcsIGJpa2Vfc3RvbGVuX2ZyZXF1ZW5jeSksCiAgICBjb21wb25lbnRzX2ZyZXF1ZW5jeV9vcmRlciA9IGlmX2Vsc2UoCiAgICAgIGNvbXBvbmVudHNfc3RvbGVuX2ZyZXF1ZW5jeSA9PSAnTmV2ZXInLAogICAgICAnMCcsCiAgICAgIGNvbXBvbmVudHNfc3RvbGVuX2ZyZXF1ZW5jeQogICAgKQogICkgJT4lCiAgZ2dwbG90KGFlcyh4ID0gYmlrZV9mcmVxdWVuY3lfb3JkZXIsIHkgPSBjb21wb25lbnRzX2ZyZXF1ZW5jeV9vcmRlciwgZmlsbCA9IHN1Ym1pc3Npb25fY291bnQpKSAlPiUKICBoZWF0X21hcF9kZXNpZ24oKSArCiAgZ2VvbV90ZXh0KGFlcyhsYWJlbCA9IHN1Ym1pc3Npb25fY291bnQpLCBjb2xvciA9ICd3aGl0ZScsIHNpemUgPSA0KSArCiAgbGFicygKICAgIHRpdGxlID0gJ0FuemFobCBkZXIgVGVpbG5haG1lbiBwcm8gQW56YWhsIGRlciBlcmxlYnRlIERpZWJzdMOkaGxlJywKICAgIHkgPSAnQW56YWhsIGRlciBlcmxlYnRlbiBLb21wb25lbnRlbmRpZWJzdMOkaGxlJywKICAgIHggPSAnQW56YWhsIGRlciBlcmxlYnRlbiBGYWhycmFkZGllYnN0w6RobGUnCiAgKQpgYGAKRGEgZ2VyYWRlIHdlbmlnZXIgYWxzIGVpbiBGw7xuZnRlbCBkZXIgVGVpbG5haG1lbiBrZWluZSBEaWVic3TDpGhsZSBhbmdlYmVuLCBsw6Rzc3Qgc2ljaCBkYXLDvGJlciBoaW5hdXMgZWluIFNlbGVjdGlvbi1CaWFzCnZlcm11dGVuLgpCZWkgZWluZXIgw7ZmZmVudGxpY2hlbiBPbmxpbmV1bWZyYWdlIGhhbmRlbHQgZXMgc2ljaCBuaWNodCBpbW1lciB1bSBlaW5lIHJhbmRvbWlzaWVydGUgU3RpY2hwcm9iZS4KRXMgaXN0IGRlbmtiYXIsIGRhc3MgVGVpbG5laG1lciwgZGllIERpZWJzdGFobCBlcmxlYnQgaGFiZW4sIGVpbiBncsO2w59lcmVzIEludGVyZXNzZSBhdWZ3ZWlzZW4gdW5kIGRhZHVyY2gKw7xiZXJwcm9wb3J0aW9uYWwgdmVydHJldGVuIHNpbmQuCgo+IEluIHdlbGNoZW4gTMOkbmRlcm4gd2lyZCBhbSB3YWhyc2NoZWlubGljaHN0ZW4gbWluZGVzdGVucyBlaW4gRmFocnJhZCBnZXN0b2hsZW4/CgpEaWUgRnJhZ2Ugd2lyZCBtaXR0ZWxzIGRlciBiZWRpbmd0ZW4gRGllYnN0YWhsd2FocnNjaGVpbmxpY2hrZWl0IGJlYW50d29ydGV0LgpEYSBow6R1ZmlnIEzDpG5kZXIgenUgd2VuaWdlIFRlaWxuYWhtZW4gaGFiZW4sIHVtIGVpbmUgdHJlZmZlbmRlIEF1c3NhZ2UgbWFjaGVuIHp1IGvDtm5uZW4sIHNpbmQgZGllc2UgdW50ZXIgIk90aGVyIgp6dXNhbW1lbmdlZmFzc3QuCgpgYGB7ciwgZmlnLndpZHRoID0gMTB9CnRoZWZ0X3Blcl9jb3VudHJ5IDwtIGRhdGEgJT4lCiAgZmlsdGVyKCFpcy5uYShsb2NhdGlvbl9jb3VudHJ5KSkgJT4lCiAgbXV0YXRlKAogICAgYmlrZV9zdG9sZW4gPSBpZl9lbHNlKGJpa2Vfc3RvbGVuX2ZyZXF1ZW5jeSA9PSAnTmV2ZXInLCAnTm8nLCAnWWVzJyksCiAgICBsb2NhdGlvbl9jb3VudHJ5ID0gaWZfZWxzZShsb2NhdGlvbl9jb3VudHJ5ICVpbiUgdG9wX2NvdW50cmllcyRsb2NhdGlvbl9jb3VudHJ5LCBsb2NhdGlvbl9jb3VudHJ5LCAnT3RoZXInKQogICkgJT4lCiAgZ3JvdXBfYnkobG9jYXRpb25fY291bnRyeSwgYmlrZV9zdG9sZW4pICU+JQogIHN1bW1hcml6ZShzdWJtaXNzaW9uX2NvdW50ID0gbigpKQoKdGhlZnRfdG90YWxzX3Blcl9jb3VudHJ5IDwtIHRoZWZ0X3Blcl9jb3VudHJ5ICU+JQogIGdyb3VwX2J5KGxvY2F0aW9uX2NvdW50cnkpICU+JQogIHN1bW1hcml6ZSh0b3RhbF9zdWJtaXNzaW9uX3Blcl9jb3VudHJ5ID0gc3VtKHN1Ym1pc3Npb25fY291bnQpKQoKbWVyZ2UodGhlZnRfcGVyX2NvdW50cnksIHRoZWZ0X3RvdGFsc19wZXJfY291bnRyeSkgJT4lCiAgZmlsdGVyKGJpa2Vfc3RvbGVuID09ICJZZXMiKSAlPiUKICBtdXRhdGUodGhlZnRfbGlrZWxpaG9vZCA9IHN1Ym1pc3Npb25fY291bnQgLyB0b3RhbF9zdWJtaXNzaW9uX3Blcl9jb3VudHJ5KSAlPiUKICBhcnJhbmdlKGRlc2ModGhlZnRfbGlrZWxpaG9vZCkpICU+JQogIGdncGxvdChhZXMoeCA9IGxvY2F0aW9uX2NvdW50cnksIHkgPSB0aGVmdF9saWtlbGlob29kLCBmaWxsID0gbG9jYXRpb25fY291bnRyeSkpICsKICBjb29yZF9jYXJ0ZXNpYW4oeWxpbSA9IGMoMC42NSwgMC44NSkpICsKICBnZW9tX2JhcihzdGF0ID0gJ2lkZW50aXR5JykgKwogIGdlb21fdGV4dChhZXMobGFiZWwgPSBzY2FsZXM6OnBlcmNlbnQodGhlZnRfbGlrZWxpaG9vZCkpLCB2anVzdCA9IC0xLCBjb2xvciA9ICdibGFjaycpICsKICB0aGVtZSgKICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICdub25lJywKICAgIGF4aXMudGl0bGUueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGlja3MueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dChtYXJnaW4ociA9IDIwKSkKICApICsKICBsYWJzKAogICAgdGl0bGUgPSAnRmFocnJhZGRpZWJzdGFobHN3YWhyc2NoZWlubGljaGtlaXQgZsO8ciBkaWUgTMOkbmRlciBtaXQgZGVuIG1laXN0ZW4gVGVpbG5haG1lbicsCiAgICB5ID0gJ0RpZWJzdGFobHdhaHJzY2hlaW5saWNoa2VpdCcsCiAgICBjYXB0aW9uID0gJ1dhaHJzY2hlaW5saWNoa2VpdGVuLCBkYXNzIG1pbmRlc3RlbnMgZWluIEZhaHJyYWQgZ2VzdG9obGVuIHdpcmQuJwogICkKYGBgCgpBdWNoIGhpZXIgbMOkc3N0IHNpY2ggd2llIG9iZW4gZXJrbMOkcnQgZWluIFNlbGVjdGlvbi1CaWFzIHZlcm11dGVuLgpFcyBmw6RsbHQgamVkb2NoIGF1ZiwgZGFzcyBkaWUgRGllYnN0YWhsd2FocnNjaGVpbmxpY2hrZWl0IGluIEthbmFkYSB1bmQgZGVuIFZlcmVpbmlndGVuIFN0YWF0ZW4gbWl0IMO8YmVyIDgwwqAlIGFtCmjDtmNoc3RlbiBsaWVndC4KRWluZSBtw7ZnbGljaGUgQmVncsO8bmR1bmcga8O2bm50ZSBkaWUgaG9oZSBBYmjDpG5naWdrZWl0IHZvbSBBdXRvIGluIGRlbiBMw6RuZGVybiBzZWluLgpFaW4gRmFocnJhZCBpc3QgZsO8ciBkaWUgTWVocmhlaXQgZGVyIEJldsO2bGtlcnVuZyBpbiBkZW4gTMOkbmRlcm4gZWluIFNwb3J0Z2Vyw6R0LCBuaWNodCBlaW4gYWxsdMOkZ2xpY2hlcyBUcmFuc3BvcnRtaXR0ZWwuCkRpZXMga8O2bm50ZSB6dSBlaW5lbSBEaWVic3RhaGwgZHVyY2ggd2VydHZvbGxlcmUgRmFocnLDpGRlciBhdHRyYWt0aXZlciBtYWNoZW4gdW5kIHp1bSBhbmRlcmVuIHNvemlhbGUgSGVtbXVuZ2VuCnJlZHV6aWVyZW4sIGRhIGVpbiBEaWVic3RhaGwgbmljaHQgZWluZW4gTW9iaWxpdMOkdHN2ZXJsdXN0IHZlcnVyc2FjaHQuCgo+IFdlbGNoZSBLb21wb25lbnRlbiB3ZXJkZW4gYW0gbWVpc3RlbiBnZXN0b2hsZW4/CgpgYGB7ciwgZmlnLndpZHRoID0gMTB9CnN0b2xlbl9jb21wb25lbnRzIDwtIGRhdGEgJT4lCiAgZmlsdGVyKGNvbXBvbmVudHNfc3RvbGVuX2ZyZXF1ZW5jeSAhPSAnTmV2ZXInKQoKY291bnRfc3RvbGVuIDwtIGZ1bmN0aW9uKGRhdGEsIG5hbWUsIGNvbHVtbikgewogIGNvbHVtbiA8LSBkZXBhcnNlKHN1YnN0aXR1dGUoY29sdW1uKSkKCiAgZGF0YSAlPiUKICAgIGZpbHRlcihkYXRhW1tjb2x1bW5dXSA9PSAiWWVzIikgJT4lCiAgICBzdW1tYXJpemUoc3VibWlzc2lvbl9jb3VudCA9IG4oKSwgY29tcG9uZW50ID0gbmFtZSkgJT4lCiAgICBzdW1tYXJpemUoY29tcG9uZW50LCB0aGVmdF9mcmVxdWVuY3kgPSBzdWJtaXNzaW9uX2NvdW50IC8gbnJvdyhkYXRhKSkKfQoKYmluZF9yb3dzKAogIHN0b2xlbl9jb21wb25lbnRzICU+JSBjb3VudF9zdG9sZW4oJ1doZWVscycsIHdoZWVsc19zdG9sZW4pLAogIHN0b2xlbl9jb21wb25lbnRzICU+JSBjb3VudF9zdG9sZW4oJ1NlYXRzJywgc2VhdHNfc3RvbGVuKSwKICBzdG9sZW5fY29tcG9uZW50cyAlPiUgY291bnRfc3RvbGVuKCdIYW5kbGViYXJzJywgaGFuZGxlYmFyc19zdG9sZW4pLAogIHN0b2xlbl9jb21wb25lbnRzICU+JSBjb3VudF9zdG9sZW4oJ0hlYWRzZXRzJywgaGVhZHNldF9zdG9sZW4pLAogIHN0b2xlbl9jb21wb25lbnRzICU+JSBjb3VudF9zdG9sZW4oJ0ZvcmtzJywgZm9ya3Nfc3RvbGVuKSwKICBzdG9sZW5fY29tcG9uZW50cyAlPiUgY291bnRfc3RvbGVuKCdCcmFrZXMnLCBicmFrZXNfc3RvbGVuKSwKICBzdG9sZW5fY29tcG9uZW50cyAlPiUgY291bnRfc3RvbGVuKCdHZWFycycsIGdlYXJzX3N0b2xlbiksCiAgc3RvbGVuX2NvbXBvbmVudHMgJT4lIGNvdW50X3N0b2xlbignTGlnaHRzJywgbGlnaHRzX3N0b2xlbiksCiAgc3RvbGVuX2NvbXBvbmVudHMgJT4lIGNvdW50X3N0b2xlbignT3RoZXInLCBvdGhlcl9jb21wb25lbnRzX3N0b2xlbiksCikgJT4lCiAgZ2dwbG90KGFlcyh4ID0gY29tcG9uZW50LCB5ID0gdGhlZnRfZnJlcXVlbmN5LCBmaWxsID0gJycpKSArCiAgZ2VvbV9iYXIoc3RhdCA9ICdpZGVudGl0eScpICsKICBnZW9tX3RleHQoYWVzKGxhYmVsID0gc2NhbGVzOjpwZXJjZW50KHRoZWZ0X2ZyZXF1ZW5jeSkpLCB2anVzdCA9IC0xLCBjb2xvciA9ICdibGFjaycpICsKICB0aGVtZSgKICAgIGxlZ2VuZC5wb3NpdGlvbiA9ICdub25lJywKICAgIGF4aXMudGlja3MgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCksCiAgICBheGlzLnRpdGxlLnggPSBlbGVtZW50X2JsYW5rKCksCiAgKSArCiAgeWxpbShjKDAsIDAuNSkpICsKICBsYWJzKAogICAgdGl0bGUgPSAnSMOkdWZpZ2tlaXQgZGVyIERpZWJzdMOkaGxlIGplIEtvbXBvbmVudGUgdW50ZXIgZGVuIEtvbXBvbmVudGVuZGllYnN0w6RobGVuJywKICApCmBgYApFcyBmw6RsbHQgYXVmLCBkYXMgS29tcG9uZW50ZW4sIGRpZSBvaG5lIFdlcmt6ZXVnZSBlbnRmZXJudCB3ZXJkZW4ga8O2bm5lbiwgYXVjaCBkZXV0bGljaCBow6R1ZmlnZXIgZ2VzdG9obGVuIHdlcmRlbiBhbHMKZGllLCBkaWUgV2Vya3pldWcgYmVuw7Z0aWdlbi4KCiMgOC4gRWZmZWt0aXZpdMOkdCBkZXIgTWHDn25haG1lbiB6dXIgRmFocnJhZGRpZWJzdGFobGF1Zmtsw6RydW5nCgpFaW5lIEF1c3NhZ2UgenVyIEVmZmVrdGl2aXTDpHQgZWluZXIgTWHDn25haG1lIGzDpHNzdCBzaWNoIGR1cmNoIGRhcyBWZXJnbGVpY2hlbiBkZXIgYmVkaW5ndGVuIFdhaHJzY2hlaW5saWNoa2VpdCB0cmVmZmVuLgoKPiBXZXJkZW4gRsOkbGxlIG1pdCBiZWthbm50ZXIgUmFobWVubnVtbWVyIMO2ZnRlcnMgw4R1Zmdla2zDpHJ0PwoKYGBge3IsIGZpZy53aWR0aCA9IDExLCByZXN1bHRzPSdhc2lzJ30KbGlicmFyeShrYWJsZUV4dHJhKQpsaWJyYXJ5KGtuaXRyKQpsaWJyYXJ5KHRpYmJsZSkKbGlicmFyeSh0aWR5cikKCnN0b2xlbl9iaWtlcyA8LSBkYXRhICU+JQogIGZpbHRlcihiaWtlX3N0b2xlbl9mcmVxdWVuY3kgIT0gJ05ldmVyJykKCnR3b19jb25kaXRpb25zIDwtIGZ1bmN0aW9uKGRhdGEsIGNvbmRpdGlvbl94LCBjb25kaXRpb25feSkgewogIGNvbmRpdGlvbl94IDwtIGRlcGFyc2Uoc3Vic3RpdHV0ZShjb25kaXRpb25feCkpCiAgY29uZGl0aW9uX3kgPC0gZGVwYXJzZShzdWJzdGl0dXRlKGNvbmRpdGlvbl95KSkKCiAgZGF0YSAlPiUKICAgIGZpbHRlcighaXMubmEoZGF0YVtjb25kaXRpb25feF0pLCAhaXMubmEoZGF0YVtbY29uZGl0aW9uX3ldXSkpICU+JQogICAgZ3JvdXBfYnkoLmRhdGFbW2NvbmRpdGlvbl94XV0sIC5kYXRhW1tjb25kaXRpb25feV1dKSAlPiUKICAgIHN1bW1hcml6ZShzdWJtaXNzaW9uX2NvdW50ID0gbigpKQp9Cgp5ZXNfbm9fbGFiZWwgPC0gZnVuY3Rpb24odmFsdWUsIHllcywgbm8pIHsKICBjYXNlX3doZW4oCiAgICB2YWx1ZSA9PSAiWWVzIiB+IHllcywKICAgIHZhbHVlID09ICJObyIgfiBubywKICAgIC5kZWZhdWx0ID0gdmFsdWUKICApCn0KCmNvbnRpbmdlbmN5X3RhYmxlIDwtIGZ1bmN0aW9uKGRhdGEsIGNvbmRpdGlvbl94LCBjb25kaXRpb25feSwgeF9sYWJsZXMsIHlfbGFibGVzKSB7CiAgY29uZGl0aW9uX3ggPC0gZGVwYXJzZShzdWJzdGl0dXRlKGNvbmRpdGlvbl94KSkKICBjb25kaXRpb25feSA8LSBkZXBhcnNlKHN1YnN0aXR1dGUoY29uZGl0aW9uX3kpKQoKICBzdW1fbGFiZWwgPC0gJ1N1bW1lJwogIHN1bV9jb2xvciA8LSAnI2YzZjNmMycKCiAgZnJhbWUgPC0gZGF0YSAlPiUKICAgIG11dGF0ZSgKICAgICAgJ3tjb25kaXRpb25feH0nIDo9IHhfbGFibGVzKC5kYXRhW1tjb25kaXRpb25feF1dKSwKICAgICAgJ3tjb25kaXRpb25feX0nIDo9IHlfbGFibGVzKC5kYXRhW1tjb25kaXRpb25feV1dKSwKICAgICkgJT4lCiAgICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gY29uZGl0aW9uX3gsIHZhbHVlc19mcm9tID0gc3VibWlzc2lvbl9jb3VudCkgJT4lCiAgICBjb2x1bW5fdG9fcm93bmFtZXModmFyID0gY29uZGl0aW9uX3kpICU+JQogICAgYXMubWF0cml4KCkgJT4lCiAgICBhZGRtYXJnaW5zKCkgJT4lCiAgICBhcy5kYXRhLmZyYW1lKCkKCiAgY29sbmFtZXMoZnJhbWUpWzNdIDwtIHN1bV9sYWJlbAogIHJvdy5uYW1lcyhmcmFtZSlbM10gPC0gc3VtX2xhYmVsCgogIGZyYW1lICU+JQogICAga2FibGUoZm9ybWF0ID0gJ2h0bWwnKSAlPiUKICAgIGthYmxlX3N0eWxpbmcoKSAlPiUKICAgIHJvd19zcGVjKDAsIGV4dHJhX2NzcyA9ICdib3JkZXItYm90dG9tOiAxcHggc29saWQ7JykgJT4lCiAgICByb3dfc3BlYygyLCBleHRyYV9jc3MgPSAnYm9yZGVyLWJvdHRvbTogMXB4IHNvbGlkOycpICU+JQogICAgY29sdW1uX3NwZWMoMSwgYm9sZCA9IFRSVUUsIGJvcmRlcl9yaWdodCA9IFRSVUUsIGluY2x1ZGVfdGhlYWQgPSBUUlVFKSAlPiUKICAgIGNvbHVtbl9zcGVjKDQsIGJhY2tncm91bmQgPSBzdW1fY29sb3IsIGluY2x1ZGVfdGhlYWQgPSBUUlVFLCBib3JkZXJfbGVmdCA9IFRSVUUpICU+JQogICAgcm93X3NwZWMoMywgYmFja2dyb3VuZCA9IHN1bV9jb2xvcikgJT4lCiAgICBwcmludCgpCgogIGRhdGEKfQoKdHdvX2NvbmRpdGlvbnNfcGxvdCA8LSBmdW5jdGlvbihkYXRhLCBjb25kaXRpb25feCwgY29uZGl0aW9uX3kpIHsKICBjb25kaXRpb25feCA8LSBkZXBhcnNlKHN1YnN0aXR1dGUoY29uZGl0aW9uX3gpKQogIGNvbmRpdGlvbl95IDwtIGRlcGFyc2Uoc3Vic3RpdHV0ZShjb25kaXRpb25feSkpCgogIGRhdGEgJT4lCiAgICBtdXRhdGUobGlrZWxpaG9vZCA9IHN1Ym1pc3Npb25fY291bnQgLyBucm93KGRhdGEpKSAlPiUKICAgIGdncGxvdChhZXMoeCA9IC5kYXRhW1tjb25kaXRpb25feF1dLCB5ID0gLmRhdGFbW2NvbmRpdGlvbl95XV0sIGZpbGwgPSBsaWtlbGlob29kKSkgJT4lCiAgICBoZWF0X21hcF9kZXNpZ24oKSArCiAgICBnZW9tX3RleHQoYWVzKGxhYmVsID0gc2NhbGVzOjpwZXJjZW50KGxpa2VsaWhvb2QpKSwgY29sb3IgPSAnd2hpdGUnLCBzaXplID0gNCkKfQoKcmV0cmlldmVfdG9fZnJhbWVfbnVtYmVyIDwtIHN0b2xlbl9iaWtlcyAlPiUgdHdvX2NvbmRpdGlvbnMoYmlrZV9yZXRyaWV2ZWQsIGZyYW1lX251bWJlcl9yZWNvcmQpCgpyZXRyaWV2ZV90b19mcmFtZV9udW1iZXIgJT4lCiAgY29udGluZ2VuY3lfdGFibGUoCiAgICBiaWtlX3JldHJpZXZlZCwKICAgIGZyYW1lX251bWJlcl9yZWNvcmQsCiAgICBcKHgpIHllc19ub19sYWJlbCh4LCAiRmFocnJhZCB6dXLDvGNrZXJoYWx0ZW4iLCAiRmFocnJhZCBuaWNodCB6dXLDvGNrZXJoYWx0ZW4iKSwKICAgIFwoeSkgeWVzX25vX2xhYmVsKHksICJSYWhtZW5udW1tZXIgYmVrYW5udCIsICJSYWhtZW5udW1tZXIgbmljaHQgYmVrYW5udCIpCiAgKSAlPiUKICB0d29fY29uZGl0aW9uc19wbG90KGJpa2VfcmV0cmlldmVkLCBmcmFtZV9udW1iZXJfcmVjb3JkKSArCiAgbGFicygKICAgIHRpdGxlID0gJ0F1Zmtsw6RydW5nc3F1b3RlbnZlcnRlaWx1bmcgZGVyIEZhaHJyYWRkaWVic3TDpGhsZSBpbiBBYmjDpG5naWtlaXQgenVyIFJhaG1lbm51bW1lcicsCiAgICB4ID0gJ0ZhaHJyYWQgenVyw7xja2VyaGFsdGVuJywKICAgIHkgPSAnUmFobWVubnVtbWVyIGJla2FubnQnLAogICAgY2FwdGlvbiA9ICdEaWUgUmFuZGjDpHVmaWdrZWl0ZW4gZW50c3ByZWNoZW4gZGVyIFN1bW1lIGVpbmVyIGVpbnplbGVyIFplaWxlIGJlemllaHVuZ3N3ZWnDn2UgU3BhbHRlLicKICApCmBgYApgYGB7ciwgZmlnLndpZHRoID0gMTAsIGZpZy5oZWlnaHQgPSAyfQppbXByb3ZlbWVudF9wbG90IDwtIGZ1bmN0aW9uKGRhdGEsIGZpeGVkX2NvbmRpdGlvbiwgY2hhbmdpbmdfY29uZGl0aW9uKSB7CiAgZml4ZWRfY29uZGl0aW9uIDwtIGRlcGFyc2Uoc3Vic3RpdHV0ZShmaXhlZF9jb25kaXRpb24pKQogIGNoYW5naW5nX2NvbmRpdGlvbiA8LSBkZXBhcnNlKHN1YnN0aXR1dGUoY2hhbmdpbmdfY29uZGl0aW9uKSkKCiAgdG90YWxzIDwtIGRhdGEgJT4lCiAgICBncm91cF9ieSguZGF0YVtbY2hhbmdpbmdfY29uZGl0aW9uXV0pICU+JQogICAgc3VtbWFyaXplKHRvdGFsID0gc3VtKHN1Ym1pc3Npb25fY291bnQpKQoKICBsaWtlbGlob29kcyA8LSBtZXJnZShkYXRhLCB0b3RhbHMsIGJ5ID0gY2hhbmdpbmdfY29uZGl0aW9uKSAlPiUKICAgIGZpbHRlciguZGF0YVtbZml4ZWRfY29uZGl0aW9uXV0gPT0gIlllcyIpICU+JQogICAgbXV0YXRlKGxpa2VsaWhvb2QgPSBzdWJtaXNzaW9uX2NvdW50IC8gdG90YWwpCgogIGxpa2VsaWhvb2QgPC0gZnVuY3Rpb24oZGF0YSwgY29uZGl0aW9uKSB7CiAgICAoZGF0YSAlPiUgZmlsdGVyKC5kYXRhW1tjaGFuZ2luZ19jb25kaXRpb25dXSA9PSBjb25kaXRpb24pKSRsaWtlbGlob29kW1sxXV0KICB9CgogIGltcHJvdmVtZW50IDwtICgobGlrZWxpaG9vZHMgJT4lIGxpa2VsaWhvb2QoIlllcyIpKSAvIChsaWtlbGlob29kcyAlPiUgbGlrZWxpaG9vZCgiTm8iKSkpIC0gMQoKICBnZ3Bsb3QoKSArCiAgICBhbm5vdGF0ZSgndGV4dCcsIHggPSAwLCB5ID0gMCwgc2l6ZSA9IDE0LCBsYWJlbCA9IHBhc3RlKHNjYWxlczo6cGVyY2VudChpbXByb3ZlbWVudCksICdtb3JlIGxpa2VseScpKSArCiAgICB0aGVtZV92b2lkKCkKfQoKcmV0cmlldmVfdG9fZnJhbWVfbnVtYmVyICU+JQogIGltcHJvdmVtZW50X3Bsb3QoYmlrZV9yZXRyaWV2ZWQsIGZyYW1lX251bWJlcl9yZWNvcmQpCmBgYAoKPiBXZXJkZW4gRsOkbGxlIG1pdCBwb2xpemVpbGljaGVyIE1lbGR1bmcgw7ZmdGVycyDDhHVmZ2VrbMOkcnQ/CgpgYGB7ciwgZmlnLndpZHRoID0gMTEsIHJlc3VsdHM9J2FzaXMnfQpyZXRyaWV2ZV90b19yZXBvcnQgPC0gc3RvbGVuX2Jpa2VzICU+JQogIHR3b19jb25kaXRpb25zKGJpa2VfcmV0cmlldmVkLCBwb2xpY2VfcmVwb3J0KQoKcmV0cmlldmVfdG9fcmVwb3J0ICU+JQogIGNvbnRpbmdlbmN5X3RhYmxlKAogICAgYmlrZV9yZXRyaWV2ZWQsCiAgICBwb2xpY2VfcmVwb3J0LAogICAgXCh4KSB5ZXNfbm9fbGFiZWwoeCwgIkZhaHJyYWQgenVyw7xja2VyaGFsdGVuIiwgIkZhaHJyYWQgbmljaHQgenVyw7xja2VyaGFsdGVuIiksCiAgICBcKHgpIHllc19ub19sYWJlbCh4LCAiUG9saXplaWxpY2ggZ2VtZWxkZXQiLCAiUG9saXplaWxpY2ggbmljaHQgZ2VtZWxkZXQiKQogICkgJT4lCiAgdHdvX2NvbmRpdGlvbnNfcGxvdChiaWtlX3JldHJpZXZlZCwgcG9saWNlX3JlcG9ydCkgKwogIGxhYnMoCiAgICB0aXRsZSA9ICdBdWZrbMOkcnVuZ3NxdW90ZW52ZXJ0ZWlsdW5nIGRlciBGYWhycmFkZGllYnN0w6RobGUgaW4gQWJow6RuZ2lrZWl0IHp1ciBwb2xpemVpbGljaGVyIEJlaMO2cmRlJywKICAgIHggPSAnRmFocnJhZCB6dXLDvGNrZXJoYWx0ZW4nLAogICAgeSA9ICdQb2xpemVpbGljaCBnZW1lbGRldCcsCiAgICBjYXB0aW9uID0gJ0RpZSBSYW5kaMOkdWZpZ2tlaXRlbiBlbnRzcHJlY2hlbiBkZXIgU3VtbWUgZWluZXIgZWluemVsZXIgWmVpbGUgYmV6aWVodW5nc3dlacOfZSBTcGFsdGUuJwogICkKYGBgCmBgYHtyLCBmaWcud2lkdGggPSAxMCwgZmlnLmhlaWdodCA9IDJ9CnJldHJpZXZlX3RvX3JlcG9ydCAlPiUgaW1wcm92ZW1lbnRfcGxvdChiaWtlX3JldHJpZXZlZCwgcG9saWNlX3JlcG9ydCkKYGBgCgoKPiBXZXJkZW4gRsOkbGxlIG1pdCBSYWhtZW5udW1tZXIgw7ZmdGVycyBwb2xpemVpbGljaCBnZW1lbGRldD8KCmBgYHtyLCBmaWcud2lkdGggPSAxMSwgcmVzdWx0cz0nYXNpcyd9CnJlcG9ydF90b19mcmFtZV9udW1iZXIgPC0gc3RvbGVuX2Jpa2VzICU+JQogIHR3b19jb25kaXRpb25zKHBvbGljZV9yZXBvcnQsIGZyYW1lX251bWJlcl9yZWNvcmQpCgpyZXBvcnRfdG9fZnJhbWVfbnVtYmVyICU+JQogIGNvbnRpbmdlbmN5X3RhYmxlKAogICAgcG9saWNlX3JlcG9ydCwKICAgIGZyYW1lX251bWJlcl9yZWNvcmQsCiAgICBcKHgpIHllc19ub19sYWJlbCh4LCAiUG9saXplaWxpY2ggZ2VtZWxkZXQiLCAiUG9saXplaWxpY2ggbmljaHQgZ2VtZWxkZXQiKSwKICAgIFwoeSkgeWVzX25vX2xhYmVsKHksICJSYWhtZW5udW1tZXIgYmVrYW5udCIsICJSYWhtZW5udW1tZXIgbmljaHQgYmVrYW5udCIpCiAgKSAlPiUKICB0d29fY29uZGl0aW9uc19wbG90KHBvbGljZV9yZXBvcnQsIGZyYW1lX251bWJlcl9yZWNvcmQpICsKICBsYWJzKAogICAgdGl0bGUgPSAnUG9saXplaWxpY2hlIEZhaHJyYWRkaWVic3RhaGxtZWxkZXF1b3RlbnZlcnRlaWx1bmcgaW4gQWJow6RuZ2lrZWl0IHp1ciBSYWhtZW5udW1tZXInLAogICAgeCA9ICdQb2xpemVpbGljaCBnZW1lbGRldCcsCiAgICB5ID0gJ1JhaG1lbm51bW1lciBiZWthbm50JywKICAgIGNhcHRpb24gPSAnRGllIFJhbmRow6R1Zmlna2VpdGVuIGVudHNwcmVjaGVuIGRlciBTdW1tZSBlaW5lciBlaW56ZWxlciBaZWlsZSBiZXppZWh1bmdzd2Vpw59lIFNwYWx0ZS4nCiAgKQpgYGAKCmBgYHtyLCBmaWcud2lkdGggPSAxMCwgZmlnLmhlaWdodCA9IDJ9CnJlcG9ydF90b19mcmFtZV9udW1iZXIgJT4lIGltcHJvdmVtZW50X3Bsb3QocG9saWNlX3JlcG9ydCwgZnJhbWVfbnVtYmVyX3JlY29yZCkKYGBg